Skip to main content

Dynamic Spin Correlations: Mapping to a Quantum Quench

  • Chapter
  • First Online:
Dynamics of a Quantum Spin Liquid

Part of the book series: Springer Theses ((Springer Theses))

  • 1476 Accesses

Abstract

The main objective of the thesis is to calculate the exact dynamic spin correlation function of the Kitaev QSL. As discussed in the introduction, the possibility to obtain exact results for interacting and nontrivial quantum systems is usually restricted to 1D systems, but the solubility of the Kitaev model extends this possibility to 2D. Many aspects of the Kitaev model were studied since its publication, but surprisingly no results for the full time dependence of correlation functions existed. However, a word of caution is necessary! Similar to the situation of the Bethe-Ansatz in 1D, obtaining exact spectra can be much easier than calculating exact correlation functions (Caux 2009). In fact the full spectrum of the Heisenberg chain is known since the thirties of the last century (Bethe 1931) but the full time (or frequency) dependence of the spin correlation function was just recently obtained and remains a challenging numerical task (Caux 2009; Mourigal et al. 2013). It turns out that the situation is similar in the case of the Kitaev model, for which I calculate the spin correlation function numerically exactly. I discuss at the end of this chapter what I precisely mean by numerically exact results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Courier Dover Publications, New York, 2012)

    MATH  Google Scholar 

  • P.W. Anderson, Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett. 18(24), 1049–1051 (1967)

    Article  ADS  Google Scholar 

  • G. Baskaran, S. Mandal, R. Shankar, Exact results for spin dynamics and fractionalization in the Kitaev model. Phys. Rev. Lett. 98(24), 247201 (2007)

    Google Scholar 

  • H. Bethe, Zur theorie der metalle (German). Z. Phys. 71(3–4), 205–226 (1931)

    Article  ADS  MATH  Google Scholar 

  • A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  ADS  Google Scholar 

  • J.-S. Caux, Correlation functions of integrable models: a description of the ABACUS algorithm. J. Math. Phys. 50(9), 095214 (2009)

    Google Scholar 

  • A.O. Gogolin, A.A. Nersesjan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  • V. Grebennikov, Y. Babanov, O. Sokolov, Extra-atomic relaxation and X-ray-spectra of narrow-band metals. 2. Results. Phys. Status Solidi B Basic Res. 80(1), 73–82 (1977)

    Google Scholar 

  • D.B. Gutman, Y. Gefen, A.D. Mirlin, Non-equilibrium 1D many-body problems and asymptotic properties of Toeplitz determinants. J. Phys. A Math. Theor. 44(16), 165003 (2011)

    Google Scholar 

  • T.-H. Han, J.S. Helton, S. Chu, D.G. Nocera, J.A. Rodriguez-Rivera, C. Broholm, Y.S. Lee, Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492(7429), 406–410 (2012)

    Article  ADS  Google Scholar 

  • M. Hentschel, F. Guinea, Orthogonality catastrophe and Kondo effect in graphene. Phys. Rev. B 76(11), 115407 (2007)

    Google Scholar 

  • A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Lovesey, Theory of Neutron Scattering from Condensed Matter. International Series of Monographs on Physics, vol. 2 (Clarendon Press, Oxford, 1984)

    Google Scholar 

  • G.D. Mahan, Excitons in metals: infinite hole mass. Phys. Rev. 163(3), 612–617 (1967)

    Article  ADS  Google Scholar 

  • M. Mourigal, M. Enderle, A. Kloepperpieper, J.-S. Caux, A. Stunault, H.M. Ronnow, Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9(7), 435–441 (2013)

    Article  Google Scholar 

  • N.I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, Groningh, 1953), 468 pp.

    MATH  Google Scholar 

  • P. Nozieres, C. DeDominicis, Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev. 178(3), 1097–1107 (1969)

    Google Scholar 

  • K. Ohtaka, Y. Tanabe, Theory of the soft-X-ray edge problem in simple metals: historical survey and recent developments. Rev. Mod. Phys. 62(4), 929–991 (1990)

    Article  ADS  Google Scholar 

  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, NY, 2007)

    MATH  Google Scholar 

  • G. Röder, G. Tkachov, M. Hentschel, Photoabsorption spectra and the X-ray edge problem in graphene. Europhys. Lett. 94(6), 67002 (2011)

    Google Scholar 

  • K. Tikhonov, M. Feigelman, Quantum spin metal state on a decorated honeycomb lattice. Phys. Rev. Lett. 105(6), 067207 (2010)

    Google Scholar 

  • K. Tikhonov, M. Feigelman, A. Kitaev, Power-law spin correlations in a perturbed spin model on a honeycomb lattice. Phys. Rev. Lett. 106(6), 067203 (2011)

    Google Scholar 

  • J. von Delft, H. Schoeller, Bosonization for beginners: refermionization for experts. Ann. Phys. 7(4), 225–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • S.-R.E. Yang, H.C. Lee, X-ray edge problem of graphene. Phys. Rev. B 76(24), 245411 (2007)

    Google Scholar 

  • J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. The International Series of Monographs on Physics Series (Clarendon Press, Oxford, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knolle, J. (2016). Dynamic Spin Correlations: Mapping to a Quantum Quench. In: Dynamics of a Quantum Spin Liquid. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23953-8_3

Download citation

Publish with us

Policies and ethics