Skip to main content

Interconnecting Networks: The Role of Connector Links

  • Chapter
  • First Online:
Interconnected Networks

Abstract

Recently, some studies have started to show how global structural properties or dynamical processes such as synchronization, robustness, cooperation, transport or epidemic spreading change dramatically when considering a network of networks, as opposed to networks in isolation. In this chapter we examine the effects that the particular way in which networks get connected exerts on each of the individual networks. We describe how choosing the adequate connector links between networks may promote or hinder different structural and dynamical properties of a particular network. We show that different connecting strategies have consequences on the distribution of network centrality, population dynamics or spreading processes. The importance of designing adequate connection strategies is illustrated with examples of social and biological systems. Finally, we discuss how this new approach can be translated to other dynamical processes, such as synchronization in an ensemble of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Newman, M.E.J., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton/Oxford (2006)

    MATH  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)

    Book  MATH  Google Scholar 

  5. Albert, R., Jeong, H., Bararabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  6. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  7. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000)

    Google Scholar 

  8. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001)

    Google Scholar 

  9. Kleinberg, J.M.: Navigation in the small world. Nature 406, 845 (2000)

    Article  ADS  Google Scholar 

  10. Motter, A.E., Zhou, C.S., Kurths, J.: Enhancing complex-network synchronization. Europhy. Lett. 69, 334 (2005)

    Article  ADS  Google Scholar 

  11. Chavez, M., Hwang, D.U., Amman, A., Hentschel, H.G.E., Boccaletti, S.: Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701 (2005)

    Article  ADS  Google Scholar 

  12. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  13. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001)

    Article  ADS  Google Scholar 

  14. Zanette, D.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64, 050901 (2001)

    Article  ADS  Google Scholar 

  15. Liu, Z., Lai, Y.C., Ye, N.: Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components. Phys. Rev. E 67, 031911 (2003)

    Article  ADS  Google Scholar 

  16. Solé, R.V., Valverde, S.: Information transfer and phase transitions in a model of internet traffic. Phys. A 289, 595–605 (2001)

    Article  MATH  Google Scholar 

  17. Arenas, A., Díaz Guilera, A., Guimerá, R.: Communication in networks with hierarchical branching. Phys. Rev. Lett. 86, 3196–3199 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Guimerá, R., Arenas, A., Díaz Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66, 026704 (2002)

    Article  ADS  Google Scholar 

  19. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical processes on networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  20. Gross, T., Blasius, B.: Adaptive networks: a review. J. R. Soc.: Interface 5, 259–271 (2008)

    Google Scholar 

  21. Gao, J., Buldyrev, S., Havlin, S., Stanley, H.: Robustness of a network of networks. Phys. Rev. Lett. 107, 1–5 (2011)

    Google Scholar 

  22. Quill, E.: When networks network. ScienceNews, September 22nd 182, 6 (2012)

    Google Scholar 

  23. Danon, L., Duch, J., Arenas, A., Díaz-Guilera, A.: Community structure identification. In: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, pp. 93–113. World Scientific, Singapore (2007)

    Google Scholar 

  24. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Canright, G.S., Engo-Monson, K.: Spreading on networks: a topographic view. Complexus 3, 131–146 (2006)

    Article  Google Scholar 

  26. Aguirre, J., Papo, D., Buldú, J.M.: Successful strategies for competing networks. Nat. Phys. 9, 230 (2013)

    Article  Google Scholar 

  27. Marcus, R.A.: Brief comments on perturbation theory of a nonsymmetric matrix: the GF matrix. J. Phys. Chem. A 105, 2612–2616 (2001)

    Article  Google Scholar 

  28. Restrepo, J.G., Ott, E., Hunt, B.R.: Characterizing the dynamical importance of network nodes and links. Phys. Rev. Lett. 97, 094102 (2006)

    Article  ADS  Google Scholar 

  29. Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80, 056114 (2009)

    Article  ADS  Google Scholar 

  30. Aguirre, J., Buldú, J.M., Manrubia, S.C.: Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability. Phys. Rev. E 80, 066112 (2009)

    Article  ADS  Google Scholar 

  31. van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)

    Article  ADS  Google Scholar 

  32. Capitán, J.A., Aguirre, J., Manrubia, S.: Dynamical community structure of populations evolving on genotype networks. Chaos, Solitons & Fractals 72, 99–106 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C.: Topological structure of the space of phenotypes: the case of RNA neutral networks. PLoS ONE 6(10), e26324 (2011)

    Article  ADS  Google Scholar 

  34. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical processes in complex networks. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  35. Daley, D.J., Gani, J.: Epidemic Modeling: An Introduction. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  36. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    Book  MATH  Google Scholar 

  37. Bearman, P., Moody, J., Stovel, K.: Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110, 44–99 (2004)

    Article  Google Scholar 

  38. Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)

    Article  Google Scholar 

  39. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. Aguirre, J., Sevilla-Escoboza, R., Gutiérrez, R., Papo, D., Buldú, J.M.: Synchronization of interconnected networks: the role of connector nodes. Phys. Rev. Lett. 112, 248701 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge P.L. del Barrio for fruitful conversations and the support of MINECO (FIS2011-27569, FIS2012-38949-C03-01, FIS2013-41057-P, and FIS2014-57686). R.S.E. acknowledges UdG, Culagos (México) for financial support (PIFI 522943 (2012) and Becas Movilidad 290674-CVU-386032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier M. Buldú .

Editor information

Editors and Affiliations

Appendix

Appendix

Networks A and B, of N A and N B nodes and L A and L B links respectively, form the initially disconnected network AB of \(N_{A} + N_{B}\) nodes and \(L_{A} + L_{B}\) links. We connect them through L connector links to create a new interconnected network T of \(N_{T} = N_{A} + N_{B}\) nodes and \(L_{T} = L_{A} + L_{B} + L\) links. For convenience, the nodes of network A are numbered from i = 1 to N A and the nodes of network B from \(i = N_{A} + 1\) to \(N_{T} = N_{A} + N_{B}\). The adjacency matrix G AB of the disconnected network consists of two diagonal blocks corresponding to G A and G B. The relation between the transition matrix M AB, also formed by two blocks, and G AB, depends on the peculiarities of the process. Note that the eigenvectors of M A and M B are related to those of M AB as follows: Let us call \(\mathbf{x}_{A,i}\) (\(i = 1,\ldots,N_{A}\)) and \(\mathbf{x}_{B,j}\) (j = 1, , N B ) the eigenvectors associated to the eigenvalues \(\lambda _{A,i}\) and \(\lambda _{B,j}\) of matrices M A and M B respectively. Note that the N A eigenvectors \(\mathbf{x}_{A,i}\) are of length N A , the N B eigenvectors \(\mathbf{x}_{B,j}\) are of length N B , and the eigenvectors of M AB are of length N T . The first i = 1, , N A eigenvectors of M AB verify \((\mathbf{u}_{AB,i})_{k} = (\mathbf{x}_{A,i})_{k}\) for k ≤ N A and \((\mathbf{u}_{AB,i})_{k} = 0\) for k > N A . Therefore, \(\lambda _{AB,i} =\lambda _{A,i}\) for i = 1, , N A . The eigenvectors \(i = N_{A} + 1,\ldots,N_{T}\) of M AB verify \((\mathbf{u}_{AB,i})_{k} = 0\) for k ≤ N A and \((\mathbf{u}_{AB,i})_{k} = (\mathbf{x}_{B,i})_{k-N_{A}}\) for k > N A . Therefore, \(\lambda _{AB,i} =\lambda _{B,i-N_{A}}\) for \(i = N_{A} + 1,\ldots,N_{T}\). For simplicity in the following calculations, due to their evident relation with the eigenvectors of M A, we denote eigenvectors \(\mathbf{u}_{AB,i}\) for i = 1, , N A as \(\mathbf{u}_{A,i}\). Analogously, we denote \(\mathbf{u}_{AB,i+N_{A}}\) for i = 1, , N B as \(\mathbf{u}_{B,i}\).

Considering the addition of interlinks as represented by the symmetric matrix P (with non-zero entries in the off-diagonal blocks of elements (i, j) with i ≤ N A and j > N A and i > N A and j ≤ N A ) to be a small perturbation of parameter ε, and Taylor-expanding the largest eigenvalue of M T and its associated eigenvector around those of M AB , we obtain

$$\displaystyle{ \mathbf{M_{T}}\mathbf{u}_{T,1} =\lambda _{T,1}\mathbf{u}_{T,1} }$$
(4.19)

where

$$\displaystyle\begin{array}{rcl} \mathbf{M_{T}} = \mathbf{M_{AB}} +\epsilon \mathbf{P},& &{}\end{array}$$
(4.20)
$$\displaystyle\begin{array}{rcl} \mathbf{u}_{T_{1}} =\mathbf{ u}_{A,1} +\epsilon \mathbf{ v}_{1} +\epsilon ^{2}\mathbf{v}_{ 2} + o(\epsilon ^{3}),& &{}\end{array}$$
(4.21)
$$\displaystyle\begin{array}{rcl} \lambda _{T,1} =\lambda _{A,1} +\epsilon t_{1} +\epsilon ^{2}t_{ 2} + o(\epsilon ^{3}).& &{}\end{array}$$
(4.22)

Taking into account that (i) \(\vert \mathbf{u}_{T,1}\vert = 1 \Rightarrow \mathbf{ u}_{A,1} \cdot \mathbf{ v}_{1} = 0\) and \(\mathbf{u}_{A,1} \cdot \mathbf{ v}_{2} = 0\), and (ii) \(\mathbf{u}_{A,1}\mathbf{P}\mathbf{u}_{A,1} = 0\) because \((\mathbf{u}_{A,1})_{i} = 0\) for i > N A , we include Eqs. (4.204.22) in Eq. (4.19), premultiply by \(\mathbf{u}_{A,1}\) and equate the terms of the same order in ε. Considering that point (i) above, in its turn, implies that \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\) can be expressed as linear combinations of the other eigenvectors of M T , which are orthogonal to \(\mathbf{u}_{A,1}\), and therefore \(\mathbf{u}_{A,1} \cdot \mathbf{M_{AB}}\mathbf{v}_{1} = 0\) and \(\mathbf{u}_{A,1} \cdot \mathbf{M_{AB}}\mathbf{v}_{2} = 0\), we obtain to first order in ε

$$\displaystyle\begin{array}{rcl} \mathbf{u}_{A,1} \cdot (\mathbf{M_{AB}}\mathbf{v}_{1} + \mathbf{P}\mathbf{u}_{A,1}) =\mathbf{ u}_{A,1} \cdot (\lambda _{A,1}\mathbf{v}_{1} + t_{1}\mathbf{u}_{A,1})& &{}\end{array}$$
(4.23)
$$\displaystyle\begin{array}{rcl} \Rightarrow t_{1} = 0& &{}\end{array}$$
(4.24)
$$\displaystyle\begin{array}{rcl} \Rightarrow (\mathbf{M_{AB}} -\lambda _{A,1})\mathbf{v}_{1} = -\mathbf{P}\mathbf{u}_{A,1}\,,& &{}\end{array}$$
(4.25)

and for order ε 2

$$\displaystyle{ \mathbf{u}_{A,1} \cdot (\mathbf{M_{AB}}\mathbf{v}_{2} + \mathbf{P}\mathbf{v}_{1}) =\mathbf{ u}_{A,1} \cdot (\lambda _{A,1}\mathbf{v}_{2} + t_{2}\mathbf{u}_{A,1}) \Rightarrow t_{2} =\mathbf{ u}_{A,1}\mathbf{P}\mathbf{v}_{1}. }$$
(4.26)

The vector \(\mathbf{v}_{1}\) can be numerically obtained solving Eq. (4.25). However, it can also be analytically expressed as

$$\displaystyle{ \mathbf{v}_{1} =\sum _{ k=1}^{N_{T} }c_{k}\mathbf{u}_{AB,k} =\sum _{ k=1}^{N_{A} }c_{k}\mathbf{u}_{A,k} +\sum _{ k=N_{A}+1}^{N_{T} }c_{k}\mathbf{u}_{B,k-N_{A}}. }$$
(4.27)

We know c 1 = 0 because \(\mathbf{u}_{A,1} \cdot \mathbf{ v}_{1} = 0\). Including Eq. (4.27) in Eq. (4.25), and multiplying both sides by \(\mathbf{u}_{AB,k}\) from the left, we obtain c k  = 0 for 1 < k ≤ N A (because \(\mathbf{u}_{A,k}\mathbf{P}\mathbf{u}_{A,1} = 0\,\forall k\)) and \(c_{k} = \frac{\mathbf{u}_{A,1}\mathbf{P}\mathbf{u}_{B,k-N_{A}}} {\lambda _{A,1}-\lambda _{B,k-N_{A}}}\) for k > N A . All this yields

$$\displaystyle{ \mathbf{v}_{1} =\sum _{ k=1}^{N_{B} }\frac{\mathbf{u}_{A,1}\mathbf{P}\mathbf{u}_{B,k}} {\lambda _{A,1} -\lambda _{B,k}} \mathbf{u}_{B,k}\,, }$$
(4.28)

and including Eqs. (4.28) and (4.26) in Eq. (4.22), we finally obtain

$$\displaystyle{ \mathbf{u}_{T,1} =\mathbf{ u}_{A,1} +\epsilon \sum _{ k=1}^{N_{B} }\frac{\mathbf{u}_{A,1}\mathbf{P}\mathbf{u}_{B,k}} {\lambda _{A,1} -\lambda _{B,k}} \mathbf{u}_{B,k} + o(\epsilon ^{2})\,, }$$
(4.29)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buldú, J.M., Sevilla-Escoboza, R., Aguirre, J., Papo, D., Gutiérrez, R. (2016). Interconnecting Networks: The Role of Connector Links. In: Garas, A. (eds) Interconnected Networks. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23947-7_4

Download citation

Publish with us

Policies and ethics