Skip to main content

Cognitively Rich Architectures for Agent-Based Models of Social Behaviors and Dynamics: A Multi-Scale Perspective

  • Chapter
  • First Online:
New Frontiers in the Study of Social Phenomena

Abstract

In this chapter a review of the different uses of agent-based modeling for investigating social behaviors and dynamics is presented. Agent-based modeling is often used to study sociality both from a behavioral and evolutionary perspective.

The aim of this chapter is to present the strengths of this modeling approach, highlighting the usefulness of—and in some scientific domains, the need for—cognitively rich architectures, as, for instance, in studying the emergence of communicative systems and information sharing.

The main reasons supporting this perspective are different. On one hand, social behavior (and not collective behavior) of living organisms in most cases is possible because individuals have cognitive abilities and skills that allow them to interact in complex ways with other individuals and with the environment where they live. On the other hand, while analytical modeling simplifies properties and behaviors of a real system to find regularities and equilibria (and this may limit the applicability of this approach), agent-based modeling adopts the opposite philosophy: agents are heterogeneous—they behave in different ways and they use different strategies to deal with unexpected events and changing environments.

The use of agent-based modeling is consolidated in investigating complex social behaviors and dynamics in some specific scientific domains (e.g., the study of cooperative behavior in living organisms); but potentially, agent-based modeling may represent a useful scientific method and tool in many other scientific fields investigating complex systems and dynamics.

The study of social-ecological systems is presented as one of the main scientific fields where the use of agent-based modeling is gaining more and more attention and where it has already shown itself to be relevant.

Finally, another scientific field—namely, the study of Earth Systems and Dynamics—is presented to highlight the promising applications of agent-based models in helping to better understand complex and nonlinear phenomena (e.g., tipping points) where the social component (i.e., the human component) is crucial and plays a central role.

The scientific journey presented in this chapter should clarify the enormous potential of agent-based modeling from an interdisciplinary and multi-scale perspective, stressing the centrality of individual cognitive skills and abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger, N. (2000). Social and ecological resilience: Are they related? Progress in Human Geography, 24, 347–364.

    Article  Google Scholar 

  • Alexander, R. D. (1987). The biology of moral systems. New York: Aldine de Gruyter.

    Google Scholar 

  • Alexander, J. C., & Giesen, B. (1987). From reduction to linkage: The long view of the micro-macro link. In J. C. Alexander, B. Giesen, R. Munch, & N. J. Smelser (Eds.), The micro-macro link (pp. 1–42). Berkeley: University of California Press.

    Google Scholar 

  • Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago: University of Chicago Press.

    Google Scholar 

  • André, J. B., & Baumard, N. (2011). Social opportunities and the evolution of fairness. Journal of Theoretical Biology, 289, 128–135.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

    Google Scholar 

  • Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390–1396.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barclay, P. (2011). Competitive helping increases with the size of biological markets and invades defection. Journal of Theoretical Biology, 281, 47–55.

    Article  ADS  MATH  Google Scholar 

  • Bateson, G. (1979) Mind and nature: A necessary unit. http://www.oikos.org/mind&nature.htm.

  • Berkes, F. (1989) Common property resources: Ecology and community-based sustainable development. London: Belhaven Press.

    Google Scholar 

  • Berkes, F. (1999). Sacred ecology: Traditional ecological knowledge and management systems. Philadelphia: Taylor & Francis.

    Google Scholar 

  • Berkes, F., & Folke, C. (2002). Back to the future: Ecosystem dynamics and local knowledge. In L. H. Gunderson & C. S. Holling (Eds.), Panarchy: Understanding transformations in human and natural systems (pp. 121–146). Washington, D.C.: Island Press.

    Google Scholar 

  • Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications, 10, 1251–1262.

    Article  Google Scholar 

  • Berkes, F., Colding, J., & Folke, C. (2001). Linking social-ecological systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Berkes, F., Colding, J., & Folke, C. (2003). Navigating social-ecological systems: Building resilience for complexity and change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boekhorst, I. J. A., & Hogeweg, P. (1994a). Effects of tree size on travelband formation in orang-utans: Data-analysis suggested by a model. In R. A. Brooks & P. Maes (Eds.), Artificial life (pp. 119–129). Cambridge: The MIT Press.

    Google Scholar 

  • Boekhorst, I. J. A. te, & Hogeweg, P. (1994b). Self- structuring in artificial ‘CHIMPS’ offers new hypotheses for male grouping in chimpanzees. Behaviour, 130, 229–52.

    Article  Google Scholar 

  • Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the USA, 99(3), 7280–7287.

    Article  ADS  Google Scholar 

  • Braeuer, J., Call, J., & Tomasello, M. (2007). Chimpanzees really know what others can see in a competitive situation. Animal Cognition, 10(4), 439–448.

    Article  Google Scholar 

  • Bryson, J. J., Ando, Y., & Lehmann, H. (2007). Agent-based modelling as scientific method: A case study analysing primate social behaviour. Philosophical Transactions of the Royal Society, B—Biological Sciences, 362(1485), 1685–1698.

    Article  Google Scholar 

  • Bshary, R., & Bronstein, J. L. (2011). A general scheme to predict partner control mechanisms in pairwise cooperative interactions between unrelated individuals. Ethology, 117, 271–283.

    Article  Google Scholar 

  • Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society, B—Biological Sciences, 272, 1641–1646.

    Article  Google Scholar 

  • Bugnyar, T., & Heinrich, B. (2006). Pilfering ravens, Corvus corax, adjust their behaviour to social context and identity of competitors. Animal Cognition, 9(4), 369–376.

    Article  Google Scholar 

  • Bull, J. J., & Rice, W. R. (1991). Distinguishing mechanisms for the evolution of cooperation. Journal of Theoretical Biology, 149, 63–74.

    Article  ADS  Google Scholar 

  • Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187–192.

    Article  Google Scholar 

  • Campennì, M., & Schino, G. (2014). Partner choice promotes cooperation: The two faces of testing with agent-based models. Journal of Theoretical Biology, 344, 49–55.

    Article  ADS  MATH  Google Scholar 

  • Cangelosi, A. (2001). Evolution of communication and language using signals, symbols, and words. IEEE Transactions in Evolution Computation, 5(2), 93–101.

    Article  Google Scholar 

  • Carpenter, S. R., & Gunderson, L. H. (2001). Coping with collapse: Ecological and social dynamics in ecosystem management. BioScience, 51, 451–457.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L., Minch, E., & Mountain, J. L. (1992). Coevolution of genes and languages revisited. Proceedings of the National Academy of Sciences of the USA, 89(12), 5620–5624.

    Article  ADS  Google Scholar 

  • Charrier, I., & Sturdy, C. B. (2005). Call-based species recognition in the black-capped chickadees. Behavioural Processes, 70(3), 271–281.

    Article  Google Scholar 

  • Cheney, D. L. (2011). Extent and limits of cooperation in animals. Proceedings of the National Academy of Science USA, 108, 10902–10909.

    Article  ADS  Google Scholar 

  • Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society, B—Biological Sciences, 362(1480), 507–522.

    Article  Google Scholar 

  • Clutton-Brock, T. H. (2009). Cooperation between non-kin in animal societies. Nature, 462, 51–57.

    Article  ADS  Google Scholar 

  • Costanza, R., Low, B. S., Ostrom, E., & Wilson, J. (2001). Institutions, ecosystems, and sustainability. Boca Raton: Lewis.

    Google Scholar 

  • Cumming, G. S. (2011). Spatial resilience in social-ecological systems. London: Springer.

    Book  Google Scholar 

  • Dally, J. M., Emery, N. J., & Clayton, N. S. (2005). Cache protection strategies by western scrub- jays, Aphelocoma californica: Implications for social cognition. Animal Behaviour, 70(6), 1251–1263.

    Article  Google Scholar 

  • Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312(5780), 1662–1665.

    Article  ADS  Google Scholar 

  • Darwin, C. (1964). The origin of species. Cambridge: Harvard University Press (reprinted).

    Book  Google Scholar 

  • DeAngelis, D. L., Godbout, L., & Shuter, B. J. (1991). An individual-based approach to predict- ing density-dependent dynamics in smallmouth bass populations. Ecological Modelling, 57(1–2), 91–115.

    Article  Google Scholar 

  • Doebeli, M., & Hauert, C. (2005). Models of cooperation based on the prisoner’s dilemma and the snowdrift game. Ecology Letters, 8(7), 748–766.

    Article  Google Scholar 

  • Dugatkin, L. A. (1997). Cooperation among animals: An evolutionary perspective. Oxford: Oxford University Press.

    Google Scholar 

  • Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344–1347.

    Article  ADS  Google Scholar 

  • Dyer, F. C., & Seeley, T. D. (1991). Dance dialects and foraging range in three asian honey bee species. Behavioral Ecology & Sociobiology, 28(4), 227–233.

    Article  Google Scholar 

  • Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443–446.

    Article  ADS  Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies. Social science from the bottom up. Washington, D.C.: Brookings Institution Press and Cambridge, MIT Press.

    Book  Google Scholar 

  • Eshel, I., & Cavalli-Sforza, L. L. (1982). Assortment of encounters and evolution of cooperativeness. Proceedings of the National Academy of Science USA, 79, 1331–1335.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Evans, J. (2011). Environmental governance. London: Routledge.

    Google Scholar 

  • Evans, C. S., Evans, C. L., & Marler, P. (1993). On the meaning of alarm calls: Functional reference in an avian vocal system. Animal Behaviour, 46(1), 23–38.

    Article  Google Scholar 

  • Fitch, W. T. (2008). Glossogeny and phylogeny: Cultural evolution meets genetic evolution. Trends in Genetics, 24(8), 373–374.

    Article  Google Scholar 

  • Fitch, W. T. (2010). The evolution of language. New York: Cambridge University Press.

    Book  Google Scholar 

  • Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: Constructing a cognitive phylogeny. Neuron, 65(6), 795–814.

    Article  Google Scholar 

  • Folke, C. (2006). Resilience: The emergence of a perspective for social-ecological systems analysis. Global Environmental Change, 16, 253–267.

    Article  Google Scholar 

  • Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31, 437–440.

    Article  Google Scholar 

  • Frank, R. H. (1989). Passions within reason. New York: W.W. Norton & Company.

    Google Scholar 

  • Fruteau, C., Lemoine, S., Hellard, E., Van Damme, E., & Noë, R. (2011). When females trade grooming for grooming: Testing partner control and partner choice models of cooperation in two primate species. Animal Behaviour, 81, 1223–1230.

    Article  Google Scholar 

  • Galef, B. G. J., & Laland, K. N. (2005). Social learning in animals: Empirical studies and theoretical models. BioScience, 55(6), 488–489.

    Article  Google Scholar 

  • Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist (2nd edn). England: Open University Press.

    Google Scholar 

  • Green, E., & Maegner, T. (1998). Red squirrels, Tamiasciurus hudsonicus, produce predator-class specific alarm calls. Animal Behaviour, 55(3), 511–518.

    Article  Google Scholar 

  • Greenberg, J. B., & Park, T. K. (1994). Political ecology. Journal of Political Ecology, 1, 1–12.

    Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (2002). Panarchy: Understanding transformations in human and natural systems. Washington, D.C.: Island Press.

    Google Scholar 

  • Hailman, J., Ficken, M., & Ficken, R. (1985). The chick-a-dee calls of Parus atricapillus. Semi- otica, 56(3–4):191–224.

    Google Scholar 

  • Hamilton, W. D. (1963). The evolution of altruistic behaviour. American Naturalist, 97(896), 354–356.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7(1), 17–52.

    Article  ADS  Google Scholar 

  • Hammerstein, P. (Ed.). (2003). Genetic and cultural evolution of cooperation. Cambridge: MIT Press.

    Book  Google Scholar 

  • Hare, B. (2001). Can competitive paradigms increase the validity of experiments on primate social cognition? Animal Cognition, 4(3–4), 269–280.

    Article  Google Scholar 

  • Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59(4), 771–785.

    Article  Google Scholar 

  • Hauert, C. (2001). Fundamental clusters in spatial 2 × 2 games. Proceedings of the Royal Society, B—Biological Sciences, 268(1468), 761–769.

    Article  Google Scholar 

  • Hemelrijk, C. K. (1996). Dominance interactions, spatial dynamics and emergent reciprocity in a virtual world. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), Proceedings of the fourth international conference on simulation of adaptive behavior 4 (pp. 545–552). Cambridge: MIT-Press.

    Google Scholar 

  • Hemelrijk, C. K. (2000). Towards the integration of social dominance and spatial structure. Animal Behaviour, 59(5), 1035–1048.

    Article  Google Scholar 

  • Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69(2), 207–231.

    Article  Google Scholar 

  • Heyes, C. (2009). Evolution, development and intentional control of imitation. Philosophical Transactions of the Royal Society, B—Biological Sciences, 364(1528), 2293–2298.

    Article  Google Scholar 

  • Hoffman, M., Yoeli, E., & Nowak, M. A. (2015). Cooperate without looking: Why we care what people think and not just what they do. Proceedings of the National Academy of Sciences, 112(6), 1727–1732.

    Google Scholar 

  • Holling, C. S. (1986). The resilience of terrestrial ecosystems: Local surprise and global change. Sustainable Development of The Biosphere, 292–317.

    Google Scholar 

  • Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405.

    Article  MathSciNet  Google Scholar 

  • Huber, L., Range, F., Voelkl, B., Szucsich, A., Viranyi, Z., & Miklosi, A. (2009). The evolution of imitation: What do the capacities of nonhuman animals tell us about the mechanisms of imitation? Philosophical Transactions of the Royal Society, B—Biological Sciences, 364(1528), 2299–2309.

    Article  Google Scholar 

  • Johnstone, R. A., & Bshary, R. (2002). From parasitism to mutualism: Partner control in asymmetric interactions. Ecology letters, 5, 634–639.

    Article  Google Scholar 

  • Kaiser, D. (2004). Signaling in myxobacteria. Annual Review of Microbiology, 58, 75–98.

    Article  Google Scholar 

  • Kaminski, J., Call, J., & Tomasello, M. (2008). Chimpanzees know what others know, but not what they believe. Cognition, 109(2), 224–234.

    Article  Google Scholar 

  • Karin-D’Arcy, M., & Povinelli, D. J. (2002). Do chimpanzees know what each other see? A closer look. International Journal of Comparative Psychology, 15, 21–54.

    Google Scholar 

  • Killingback, T., Doebeli, M., & Knowlton, N. (1999). Variable investment, the continuous prisoner’s dilemma, and the origin of cooperation. Proceedings of the Royal Society, B—Biological Sciences, 266(1430), 1723–1728.

    Article  Google Scholar 

  • Kim, J. (1992). “Downward causation” in emergentism and non-reductive physicalism. In A. Beckermann, H. Flohr, & J. Kim (Eds.), Emergence or reduction? Essays on the prospects of nonreductive physicalism. Berlin: Walter de Gruyter.

    Google Scholar 

  • Kreft, J. U., Booth, G., & Wimpenny, J. W. T. (1998). Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology, 144(12), 3275–3287.

    Article  Google Scholar 

  • Krupnik, I., & Jolly, D. (2002). The earth is faster now: Indigenous observation on arctic environmental change. Fairbanks: Arcus.

    Google Scholar 

  • Leadbeater, E., & Chittka, L. (2007). Social learning in insects—from miniature brains to consensus building. Current Biology, 17(16), 703–713.

    Article  Google Scholar 

  • Lehmann, L., & Keller, L. (2006). The evolution of cooperation and altruism. A general framework and classification of models. Journal of Evolutionary Biology, 19, 1365–1376.

    Article  Google Scholar 

  • Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1, 431–436.

    Article  Google Scholar 

  • Levin, S. A. (1999). Fragile dominion: Complexity and the commons. Reading: Perseus Books.

    Google Scholar 

  • Lieberman, E., Michel, J.-B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying the evolutionary dynamics of language. Nature, 449, 713–716.

    Article  ADS  Google Scholar 

  • Machlis, G. E., Force, J. E., & Burch, W. R. Jr. (1997). The human ecosystem part I: The human ecosystem as an organizing concept in ecosystem management. Society and Natural Resources, 10, 347–367.

    Article  Google Scholar 

  • Mackinson, S., & Nottestad, L. (1998). Combining local and scientific knowledge. Reviews in Fish Biology and Fisheries, 8, 481–490.

    Article  Google Scholar 

  • Manser, M., Seyfarth, R. M., & Cheney, D. L. (2002). Suricate alarm calls signal predator class and urgency. Trends in Cognitive Sciences, 6(2), 55–57.

    Article  Google Scholar 

  • McCay, B. J., & Acheson, J. M. (1987). The question of the cotntnons. The culture and ecology of comtnunal resources. Tucson: The University of Arizona Press.

    Google Scholar 

  • McLain, R., & Lee, R. (1996). Adaptive management: Promises and pitfalls. Journal of Environmental Management, 20, 437–448.

    ADS  Google Scholar 

  • Mesoudi, A., Whiten, A., & Laland, K. N. (2004). Perspective: Is human cultural evolution darwinian? Evidence reviewed from the perspective of the origin of species. Evolution, 58(1), 1–11.

    Google Scholar 

  • Gilbert, N. (2008). Agent-based models (quantitative applications in the social sciences). Thousand Oaks: Sage Publications, Inc.

    Book  Google Scholar 

  • Noble, J. (1999). Cooperation, conflict and the evolution of communication. Adaptive Behavior, 7(3–4), 349–369.

    Article  Google Scholar 

  • Noble, J., de Ruiter, J. P., & Arnold, K. (2010). From monkey alarm calls to human language: How simulations can fill the gap. Adaptive Behavior, 18(1), 66–82.

    Article  Google Scholar 

  • Noë, R. (2006). Cooperation experiments: Coordination through communication versus acting apart together. Animal Behaviour, 71, 1–18.

    Article  Google Scholar 

  • Noë, R., & Hammerstein, P. (1994). Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology, 35, 1–11.

    Article  Google Scholar 

  • Norberg, J., & Cumming, G. S. (2008). Complexity theory for a sustainable future. New York: Columbia University Press.

    Google Scholar 

  • Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314, 1560–1563.

    Article  ADS  Google Scholar 

  • Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359, 826–829.

    Article  ADS  Google Scholar 

  • Nowak, M. A., & Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393, 573–577.

    Article  ADS  Google Scholar 

  • Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466, 1057–1062.

    Article  ADS  Google Scholar 

  • Nunn, C. L., & Lewis, R. J. (2001). Cooperation and collective action in animal behavior. In R. Noë, van J. A. R. A. M. Hooff, & P. Hammerstein (Eds.), Economics in nature (pp. 42–66). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pagel, M., Atkinson, Q. D., & Meade, A. (2007). Frequency of word-use predicts rates of lexical evolution throughout indo-european history. Nature, 449, 717–720.

    Article  ADS  Google Scholar 

  • Paolucci, M., Conte, R., & Di Tosto, G. (2006). A model of social organization and the evolution of food sharing in vampire bats. Adaptive Behavior, 14(3), 223–239.

    Article  Google Scholar 

  • Petschel-Held, G., et al. (1999). Syndromes of global change—A qualitative modelling approach to assist global environmental management. Environmental Modeling and Assessment, 4, 295–314.

    Article  Google Scholar 

  • Petschel-Held, G., & Reusswig, F. (1999). Climate change and global change—The syndrome concept. In J. Hacker & A. Pelchen (Eds.), Goals and economic instruments for the achievement of global warming mitigation in Europe (pp. 79–95). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Petschel-Held, G., Block, A., & Schellnhuber, H.-J. (1995). Syndrome des Globalen Wandels—ein systemarer Ansatz für Sustainable-Development-Indikatoren. GEOwissenschaften, 3, 81–87.

    Google Scholar 

  • Povinelli, D. J., & Eddy, T. J. (1996). Chimpanzees: Joint visual attention. Psychological Science, 7(3), 129–135.

    Article  Google Scholar 

  • Povinelli, D. J., & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences, 7(4), 157–160.

    Article  Google Scholar 

  • Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1990). Inferences about guessing and knowing by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 104(3), 203–210.

    Article  Google Scholar 

  • Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515–526.

    Article  Google Scholar 

  • Pretty, J., & Ward, H. (2001). Social capital and the environment. World Development, 29, 209–227.

    Article  Google Scholar 

  • Redman, C., Grove, M. J., & Kuby, L. (2004). Integrating social science into the Long Term Ecological Research (LTER) Network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7(2), 161–171.

    Article  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34 (SIGGRAPH ’87 Conference Proceedings).

    Article  Google Scholar 

  • Roberts, G. (1998). Competitive altruism: From reciprocity to the handicap principle. Proceedings of the Royal Society B, 265, 427–431.

    Article  Google Scholar 

  • Sachs, J. L., Mueller, U. G., Wilcox, T. P., & Bull, J. J. (2004). The evolution of cooperation. The Quarterly Review of Biology, 79, 135–160.

    Article  Google Scholar 

  • Schauder, S., & Bassler, B. L. (2001). The languages of bacteria. Genes & Development, 15, 1468–1480.

    Article  Google Scholar 

  • Schellnhuber, H.-J., et al. (1997). Syndromes of global change. GAIA, 6, 19–34.

    Article  Google Scholar 

  • Schermerhorn, P., & Scheutz, M. (2007). Investigating the adaptiveness of communication in multi-agent behavior coordination. Adaptive Behavior, 15(4), 423–445.

    Article  Google Scholar 

  • Schino, G. (2007). Grooming and agonistic support: A meta-analysis of primate reciprocal altruism. Behavioural Ecology, 18, 115–120.

    Article  Google Scholar 

  • Schino, G., & Aureli, F. (2008). Grooming reciprocation among female primates: A meta-analysis. Biology Letters, 4, 9–11.

    Article  Google Scholar 

  • Schino, G., & Aureli, F. (2009). Reciprocal altruism in primates: Partner choice, cognition, and emotions. Advances in the Study of Behavior, 39, 45–69.

    Article  Google Scholar 

  • Schuster, S., Woehl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: How archer fish learn to down rapidly moving targets. Current Biology, 16(4), 378–383.

    Article  Google Scholar 

  • Seyfarth, R. M., & Cheney, D. L. (1990). The assessment by vervet monkeys of their own and other species’ alarm calls. Animal Behaviour, 40(4), 754–764.

    Article  Google Scholar 

  • Seyfarth, R. M., & Cheney, D. L. (2012). The evolutionary origins of friendship. The Annual Review of Psychology, 63, 153–177.

    Article  Google Scholar 

  • Sherratt, T. N., & Roberts, G. (1998). The evolution of generosity and choosiness in cooperative exchanges. Journal of theoretical biology, 193, 167–177.

    Article  ADS  Google Scholar 

  • Sigmund, K., Hauert, C., & Nowak, M. A. (2001). Reward and punishment. Proceedings of the National Academy of Sciences of the USA, 98(19), 10757–10762.

    Article  ADS  Google Scholar 

  • Sigmund, K., Fehr, E., & Nowak, M. A. (2002). The economics of fair play. Scientific American, 286, 82–87.

    Article  ADS  Google Scholar 

  • Skyrms, B. (2009). Evolution of signalling systems with multiple senders and receivers. Philosophical Transactions of the Royal Society B—Biological Sciences, 364(1518), 771–779.

    Article  Google Scholar 

  • Smith, K. (2002). Natural selection and cultural selection in the evolution of communication. Adaptive Behavior, 10(1), 25–45.

    Article  Google Scholar 

  • Sober, E., & Wilson, D. S. (1998). Unto others: The evolution and psychology of unselfish behavior. Cambridge: Harvard University Press.

    Google Scholar 

  • Striedter, G. F. (2004). Principles of brain evolution. Sunderland: Sinauer.

    Google Scholar 

  • Taga, M. E., & Bassler, B. L. (2003). Chemical communication among bacteria. Proceedings of the National Academy of Sciences of the USA, 100(2), 14549–14554.

    Article  ADS  Google Scholar 

  • Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B—Biological Sciences, 364(1528), 2405–2415.

    Article  Google Scholar 

  • Tiddi, B., Aureli, F., Polizzi di Sorrentino, E., Janson, C. H., & Schino, G. (2011). Grooming for tolerance? Two mechanisms of exchange in wild tufted capuchin monkeys. Behavioural Ecology, 22, 663–669.

    Article  Google Scholar 

  • Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states—The question is which ones and to what extent. Trends in Cognitive Sciences, 7(4), 153–156.

    Article  Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. The Quarterly Review of Biology, 46, 35–57.

    Article  Google Scholar 

  • Wagner, K., Reggia, J. A., Uriagereka, J., & Wilkinson, G. S. (2003). Progress in the simulation of emergent communication and language. Adaptive Behavior, 11(1), 37–69.

    Article  Google Scholar 

  • Walker, B. H., Gunderson, L. H., Kinzig, A. P., Folke, C., Carpenter, S. R., & Schultz, L. (2006). A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecology and Society, 11(1), 13. http://www.ecologyandsociety.org/vol11/iss1/art13/.

    Article  Google Scholar 

  • Warren, D. M., Slikkerveer, L. J., & Brokensha, D. (1995). The cultural dimension of development: Indigenous knowledge system. London: Intermediate Technology Publications.

    Book  Google Scholar 

  • West, S. A., Griffin, A. S., & Gardner, A. (2007). Evolutionary explanations for cooperation. Current Biology, 17, 661–672.

    Article  Google Scholar 

  • Wilkinson, A., Kuenstner, K., Mueller, J., & Huber, L. (2010). Social learning in a non-social reptile (Geochelone carbonaria). Biology Letters, 6(5), 614–616.

    Article  Google Scholar 

  • Wilson, E. O. (1975). Sociobiology. Cambridge: Harvard University Press.

    Google Scholar 

  • Wilson, D. S., & Sober, E. (1994). Reintroducing group selection to the human behavioral sciences. Behavioral & Brain Sciences, 17(4), 585–654.

    Article  Google Scholar 

  • Zentall, T. R. (2004). Action imitation in birds. Learning & Behavior, 32(1), 15–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Campennì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campennì, M. (2016). Cognitively Rich Architectures for Agent-Based Models of Social Behaviors and Dynamics: A Multi-Scale Perspective. In: Cecconi, F. (eds) New Frontiers in the Study of Social Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-23938-5_2

Download citation

Publish with us

Policies and ethics