Advertisement

Investigating the Potential of the Home Learning Environment for Early Mathematics Learning: First Results of an Intervention Study with Kindergarten Children

  • Julia Streit-Lehmann
  • Andrea Peter-Koop
Chapter

Abstract

The context of the study reported in this chapter is a combined family literacy and family numeracy project for preschoolers and their parents, which aims to foster early mathematical competencies and its relevant language for children in the year prior to school enrollment, i.e., Grade 1. Special attention is given to children from families with a low socioeconomic and educational background that in Germany frequently correlates with a migration background. In preparation for a large-scale intervention study, a pilot study has been conducted with 57 preschoolers and their families from 3 kindergartens. The study followed a pre-/post-test design with a follow-up test. First results suggest that the majority of the sample demonstrated benefits from the intervention, irrespective of migration background or nationality. However, at the end of Grade 1, these positive results only had a lasting effect on the performance of children from families without migration background.

Keywords

Early numeracy Kindergarten children Parental involvement Children with family languages other than the language of instruction Play-based intervention 

References

  1. Anderson, A., Anderson, J., & Thauberger, C. (2008). Mathematics learning and teaching in the early years. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 95–132). Charlotte, NC: Information Age.Google Scholar
  2. Aunola, K., Leskinen, E., Lerkkanen, M.-K., & Nurmi, J.-E. (2004). Developmental dynamics of mathematical performance from preschool to grade 2. Journal of Educational Psychology, 96, 762–770.CrossRefGoogle Scholar
  3. Baroody, A. J., & Wilkins, J. (1999). The development of informal counting, number, and arithmetic skills and concepts. In J. Copley (Ed.), Mathematics in the early years (pp. 48–65). Reston, VA: NCTM.Google Scholar
  4. Baumert, J., & Schümer, G. (2002). Familiäre Lebensverhältnisse, Bildungsbeteiligung und Kompetenzerwerb im nationalen Vergleich. In Deutsches PISA-Konsortium (Ed.), PISA 2000—Die Länder der Bundesrepublik Deutschland im Vergleich (S. 159–202). Opladen: Leske + Budrich.Google Scholar
  5. Bronfenbrenner, U. (2000). Ecological system theory. In A. E. Kazdin (Ed.), Encyclopedia of psychology (Vol. 3, pp. 129–133). Washington, DC: American Psychological Association.Google Scholar
  6. Clarke, B., Clarke, D., & Cheeseman, J. (2006). The mathematical knowledge and understanding young children bring to school. Mathematics Education Research Journal, 18(1), 78–103.CrossRefGoogle Scholar
  7. Clarke, B., Clarke, D., Grüßing, M., & Peter-Koop, A. (2008). Mathematische Kompetenzen von Vorschulkindern: Ergebnisse eines Ländervergleichs zwischen Australien und Deutschland. Journal für Mathematik-Didaktik, 29(3/4), 259–286.CrossRefGoogle Scholar
  8. Clements, D. (1984). Training effects on the development and generalization of Piagetian logical operations and knowledge of number. Journal of Educational Psychology, 76, 766–776.CrossRefGoogle Scholar
  9. Cross, C. T., Woods, T., & Schweingruber, H. (Eds.). (2009). Mathematics learning in early childhood. Paths towards excellence and equity. Washington, DC: National Academies Press.Google Scholar
  10. Cummins, J. (1979). Linguistic interdependence and the educational development of bilingual children. Review of Educational Research, 49(2), 222–251.CrossRefGoogle Scholar
  11. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  12. Epstein, J. L. (1995). School/family/community partnerships: Caring for the children we share. Phi Delta Kappan, 76, 701–712.Google Scholar
  13. Ehmke, T., & Siegle, T. (2008). Einfluss elterlicher Mathematikkompetenz und familialer Prozesse auf den Kompetenzerwerb von Kindern in Mathematik. Psychologie in Erziehung und Unterricht, 55, 253–264.Google Scholar
  14. Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and the conservation of number equivalence. Child Development, 54, 91–97.CrossRefGoogle Scholar
  15. Gal, I., & Stout, A. (1995). Family achievement in mathematics. Philadelphia, PA: National Center on Adult Literacy, University of Pennsylvania.Google Scholar
  16. Ginsburg, H., Inoue, N., & Seo, K. (1999). Young children doing mathematics: Observations of everyday activities. In J. Copley (Ed.), Mathematics in the early years (pp. 88–99). Reston, VA: NCTM.Google Scholar
  17. Haag, N., Böhme, K., & Stanat, P. (2012). Zuwanderungsbezogene Disparitäten. In P. Stanat, H. A. Pant, K. Böhme, & D. Richter (Eds.), Kompetenzen von Schülerinnen und Schülern am Ende der vierten Jahrgangsstufe in den Fächern Deutsch und Mathematik. Ergebnisse des IQB Ländervergleichs 2011 (pp. 209–235). Berlin: Waxmann.Google Scholar
  18. Helmke, A., & Weinert, F. E. (1999). Schooling and the development of achievement differences. In F. E. Weinert & W. Schneider (Eds.), Individual development from 3 to 12: Findings from the Munich Longitudinal Study (pp. 176–192). Cambridge, UK: Cambridge University Press.Google Scholar
  19. Kaufmann, L., Nuerk, H.-C., Graf, M., Krinzinger, H., Delazer, M., & Willmes, K. (2009). TEDI-MATH. Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse. Göttingen: Hogrefe.Google Scholar
  20. Krajewski, K., Küspert, P., & Schneider, W. (2002). DEMAT 1+. Deutscher Mathematiktest für erste Klassen. Göttingen: Hogrefe.Google Scholar
  21. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526.CrossRefGoogle Scholar
  22. Peter-Koop, A., & Grüßing, M. (2011). ElementarMathematisches BasisInterview für den Einsatz im Kindergarten. Offenburg: Mildenberger.Google Scholar
  23. Peter-Koop, A., & Grüßing, M. (2014). Early enhancement of kindergarten children potentially at risk in learning school mathematics—Design and findings of an intervention study. In U. Kortenkamp, B. Brandt, C. Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 307–321). New York: Springer.Google Scholar
  24. Peter-Koop, A., & Kollhoff, S. (2015, June 28–July 3). Exploring the influence of early numeracy understanding prior to school on mathematics achievement at the end of Grade 2. Paper presented at the mathematics education research conference of Australasia, University of the Sunshine Coast, Queensland, Australia.Google Scholar
  25. Piaget, J. (1952). The child’s conception of number. London: Routledge.Google Scholar
  26. Prediger, S., Renk, N., Büchter, A., Gürsoy, E., & Benholz, C. (2013). Family background or language disadvantages? Factors for underachievement in high stakes tests. In A. Lindmeier, & A. Heinze (Eds.), Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49–56). Kiel: PME.Google Scholar
  27. Raven, J. C., Raven, J., & Court, J. H. (2010). Coloured progressive matrices. Frankfurt/Main: Pearson.Google Scholar
  28. Resnick, L. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169.CrossRefGoogle Scholar
  29. Robinson, I., & Fowler, H. (1990). Families counting on. In K. Clements (Ed.), Whither mathematics? (pp. 285–286). Melbourne: Mathematical Association of Victoria.Google Scholar
  30. Schmitman gen. Pothmann, A. (2008). Mathematiklernen und Migrationshintergrund. Quantitative Analysen zu frühen mathematischen und (mehr)sprachlichen Kompetenzen. Doctoral thesis, University of Oldenburg, Faculty of Education.Google Scholar
  31. Schwarz, A., & Weishaupt, H. (2014). Veränderungen in der sozialen und ethnischen Zusammensetzung der Schülerschaft aus demografischer Perspektive. Zeitschrift für Erziehungswissenschaft, 17(2), 9–35.CrossRefGoogle Scholar
  32. Sheldon, S. B., & Epstein, J. (2005). Involvement counts: Family and community partnership and mathematics achievement. The Journal of Educational Research, 98(4), 196–206.CrossRefGoogle Scholar
  33. Sophian, C. (1995). Representation and reasoning in early numerical development. Child Development, 66, 559–577.CrossRefGoogle Scholar
  34. Stanat, P., Pant, H. A., Böhme, K., & Richter, D. (Eds.). (2012). Kompetenzen von Schülerinnen und Schülern am Ende der vierten Jahrgangsstufe in den Fächern Deutsch und Mathematik. Ergebnisse des IQB Ländervergleichs 2011. Berlin: Waxmann.Google Scholar
  35. Stenmark, J., Thompson, V., & Cassey, R. (1986). Family math. Berkeley, CA: University of California.Google Scholar
  36. Stern, E. (1997). Ergebnisse aus dem SCHOLASTIK-Projekt. In F. E. Weinert & A. Helmke (Eds.), Entwicklung im Grundschulalter (pp. 157–170). Weinheim: Beltz.Google Scholar
  37. Street, B., Baker, D., & Tomlin, A. (2005). Navigating numeracies: Home/school numeracy practices. Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Julia Streit-Lehmann
    • 1
  • Andrea Peter-Koop
    • 1
  1. 1.Faculty of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations