Mathematical Understanding in Transition from Kindergarten to Primary School: Play as Bridge Between Two Educational Institutions

  • Dorothea TubachEmail author
  • Marcus Nührenbörger


German kindergarten and Grundschule (“primary school”) are characterized by different conditions concerning the organization of learning processes. This situation places particular demands on the arrangement of linked and coherent mathematical learning environments in transition from more informal to formal learning situations. Particularly the relational understanding of numbers is one important objective for mathematical learning during the transition. In our qualitative study, we developed three “complementary playing and learning environments” (CLEs) and observed how 20 children explored and discussed relationships between numbers in the last year of kindergarten and the first year of school. We focus on the institutional similarities and differences and discuss them with regard to the arrangement of playing and learning environments in kindergarten and primary school.


Primary School Learning Environment Mathematical Learning Learning Situation Kindergarten Teacher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahtola, A., Silinskas, G., Poikonen, P.-L., Kontoniemi, M., Niemi, P., & Normi, J.-E. (2011). Transition to formal schooling. Early Childhood Research Quarterly, 26, 295–302. doi: 10.1016/j.ecresq.2010.12.002.CrossRefGoogle Scholar
  2. Clements, D. H. (2004). Major themes and recommendations. In D. H. Clements, J. Sarama, & A.-M. DiBase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 7–72). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  3. Clements, D. H., Sarama, J., & DiBase, A.-M. (2004). Engaging young children in mathematics: Standards for early childhood mathematics education. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  4. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32, 9–13. doi: 10.3102/0013189X032001009.CrossRefGoogle Scholar
  5. Dockett, S., & Perry, B. (2010). What makes mathematics play? In L. Sparrow, B. Kissane & C. Hurst (Eds.), Shaping the future of mathematics education: Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia (pp. 715–718). Fremantle, WA: MERGA.Google Scholar
  6. Flexer, R. J. (1986). The power of five: The step before the power of ten. The Arithmetic Teacher, 34(3), 5–9. doi: 10.2307/41193003.Google Scholar
  7. Gasteiger, H. (2012). Fostering early mathematical competencies in natural learning situations—Foundation and challenges of a competence-oriented concept of mathematics education in kindergarten. Journal für Mathematik-Didaktik, 33, 181–201. doi: 10.1007/s13138-012-0042-x.CrossRefGoogle Scholar
  8. Ginsburg, H. P. (2006). Mathematical play and playful mathematics: A guide for early education. In D. G. Singer, R. M. Golinkoff, & K. Hirsh-Pasek (Eds.), Play = learning. How play motivates and enhances children’s cognitive and social-emotional growth (pp. 145–165). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  9. Hasemann, K. (2005). Word problems and mathematical understanding. Zentralblatt für Didaktik der Mathematik, 37, 208–211. doi: 10.1007/s11858-005-0010-8.CrossRefGoogle Scholar
  10. Hirsh-Pasek, K., Golinkoff, R. M., Berk, L. E., & Singer, D. G. (2009). A mandate for playful learning in preschool. Presenting the evidence. New York, NY: Oxford University Press.Google Scholar
  11. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526. doi: 10.1016/j.learninstruc.2008.10.002.CrossRefGoogle Scholar
  12. Krummheuer, G. (2000). Interpretative classroom research in primary mathematics education. Zentralblatt für Didaktik der Mathematik, 32, 124–125. doi: 10.1007/BF02655650.CrossRefGoogle Scholar
  13. Langhorst, P., Ehlert, A., & Fritz, A. (2012). Non-numerical and numerical understanding of the part-whole concept of children aged 4 to 8 in word problems. Journal für Mathematik-Didaktik, 33, 233–262. doi: 10.1007/s13138-012-0039-5.CrossRefGoogle Scholar
  14. Nührenbörger, M., & Steinbring, H. (2009). Forms of mathematical interaction in different social settings: Examples from students’, teachers’ and teacher-students’ communication about mathematics. Journal of Mathematics Teacher Education, 12, 111–132. doi: 10.1007/s10857-009-9100-9.CrossRefGoogle Scholar
  15. Nührenbörger, M., & Tubach, D. (2012). Mathematische Lernumgebungen. Komplementäre Lerngelegenheiten in Kita und Grundschule. Die Grundschulzeitschrift, 26(255/256), 87–89.Google Scholar
  16. Pramling Samuelsson, I., & Asplund Carlsson, M. (2008). The playing learning child: Towards a pedagogy of early childhood. Scandinavian Journal of Educational Research, 52, 623–641. doi: 10.1080/00313830802497265.CrossRefGoogle Scholar
  17. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. In Child Development, 79, 357–394. Retrieved from
  18. Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 109–151). New York: Academic Press.Google Scholar
  19. Roßbach, H.-G. (2010). Bildungs- und Lernverläufe im Übergang. In A. Diller, H. R. Leu, & T. Rauschenbach (Eds.), Wie viel Schule verträgt der Kindergarten? (pp. 75–90). München: DJI.Google Scholar
  20. Schuler, S. (2011). Playing and learning in early mathematics education—Modelling a complex relationship. Paper presented at the CERME 7, Rzeeszów.Google Scholar
  21. Stebler, R., Vogt, F., Wolf, I., Hauser, B., & Rechsteiner, K. (2013). Play-based mathematics in kindergarten. A video analysis of children’s mathematical behaviour while playing board game in small groups. Journal für Mathematik-Didaktik, 34, 149–175. doi: 10.1007/s13138-013-0051-4.CrossRefGoogle Scholar
  22. Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction: An epistemological perspective. Berlin, New York: Springer.Google Scholar
  23. Steinweg, A. S. (2001). Zur Entwicklung des Zahlenmusterverständnisses bei Kindern [Children’s understanding of number pattern]. Münster: LIT.Google Scholar
  24. van Oers, B. (2010). Emergent mathematical thinking in the context of play. Educational Studies in Mathematics, 74, 23–37. doi: 10.1007/s10649-009-9225-x.CrossRefGoogle Scholar
  25. van Oers, B. (2014). Cultural-historical perspectives on play: Central ideas. In L. Brooker, M. Blaise, & S. Edwards (Eds.), The Sage handbook of play and learning in early childhood (pp. 56–66). Los Angeles, CA: Sage.Google Scholar
  26. Wittmann, E. C. (1995). Mathematics education as a ‘design science’. Educational Studies in Mathematics, 29, 355–734. doi: 10.1007/BF01273911.CrossRefGoogle Scholar
  27. Wittmann, E. C. (2001). Developing mathematics education in a systemic process. Educational Studies in Mathematics, 48, 1–20. doi: 10.1023/A:1015538317850.CrossRefGoogle Scholar
  28. Wittmann, E. C., & Müller, G. N. (2009). Das Zahlenbuch. Handbuch zum Frühförderprogramm [Zahlenbuch. Handbook of the early learning programme]. Leipzig: Klett.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.TU Dortmund UniversityDortmundGermany

Personalised recommendations