Advertisement

Negotiating with Family Members in a Block Play

  • Ergi Acar BayraktarEmail author
Chapter

Abstract

In this chapter, a study on the impact of the familial socialisation on mathematics learning is described. The aim of the study is the development of theoretical insights in the functioning of familial interactions for the formation of children’s mathematical thinking. The concept of the ‘interactional niche in the development of mathematical thinking’ is adapted to the special needs of familial interaction processes. It is integrated with the idea of Mathematical Learning Support System in order to shed light on how an elder sibling and a grandmother can be supportive or helpful for the mathematics learning process of a child. In this sense the negotiation of meaning during the block play is observed and identified using interaction analysis. The result demonstrates that a block play with an elder sibling and a grandmother takes place as a social act for a child and an elder sibling and a grandmother provides different learning opportunities to the child, who is exposed to learning about giving, receiving, sharing, and expressing his ideas and feelings. On the basis of this result, it can be concluded that through a block play with family members, a child gets an opportunity to think, to talk, to learn, and to be ‘educated’ in mathematics and in cognitive, social-emotional competences as well.

Keywords

Mathematical Thinking Young Brother Spatial Thinking Play Situation Familial Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramovitch, R., Pepler, D., & Corter, C. (2014). Patterns of sibling interaction among preschool age children. In M. E. Lamb & B. Sutton-Smith (Eds.), Sibling relationships: Their nature and significance across the lifespan (pp. 61–86). Hillsdale, NJ: Erlbaum.Google Scholar
  2. Acar, E. (2011). Mathematics learning in a familial context (Mathematiklernen in einer familialen Spielsituation). In R. Haug & L. Holzäpfel (Eds.), Beiträge zum Mathematikunterricht 2011 (pp. 43–46). Münster: WTM.Google Scholar
  3. Bayraktar, E. A. (2012). The first discernment into the interactional niche in the development of mathematical thinking in the familial context. In Proceedings of the first congress of a mathematics education perspective on early mathematics learning between the poles of instruction and construction. http://cermat.org/poem2012/main/proceedings_files/Acar-POEM2012.pdf. Accessed 12 December 2012.
  4. Bayraktar, E. A. (2014a). The second discernment into the interactional niche in the development of mathematical thinking in the familial context. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th congress of the European Society for Research in Mathematics Education (pp. 2078–2088). Ankara: Middle East Technical University. ISBN:978-975-429-315-9.Google Scholar
  5. Bayraktar, E. A. (2014b). The reflection of spatial thinking on the interactional niche in the family. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning selected papers of the POEM 2012 conference (pp. 85–107). New York: Springer.Google Scholar
  6. Bayraktar, E. A. (2014c). Interactional niche of spatial thinking of children in the familial context (Interaktionale Nische der mathematischen Raumvorstellung den Vorschulkindern im familialen Kontext). In E. Niehaus, R. Rasch, J. Roth, H.-S. Siller, & W. Zillmer (Eds.), Beiträge zum Mathematikunterricht 2014 (pp. 93–96). Münster: WTM.Google Scholar
  7. Bayraktar, E. A., Hümmer, A.-M., Huth, M., Münz, M., & Reimann, M. (2011). Research methods and settings of erStMaL and MaKreKi projects (Forschungsmethodischer Rahmen der Projekte erStMaL und MaKreKi). In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am Center for Individual Development and Adaptive Education (pp. 11–24). Berlin: Waxmann.Google Scholar
  8. Bayraktar, E. A., & Krummheuer, G. (2011). Thematisation of spatial relationships and perspectives in play situations of two families. The first discernment into the interactional niche in the development of mathematical thinking in the familial context. (Die Thematisierung von Lagebeziehungen und Perspektiven in zwei familialen Spielsituationen. Erste Einsichten in die Struktur “interaktionaler Nischen mathematischer Denkentwicklung” im familialen Kontext). In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Education” (pp. 11–24). Berlin: Waxmann.Google Scholar
  9. Brandt, B. (2004). Children as learners. Leeway of participation and participation profiles (Kinder als Lernende. Partizipationsspielräume und -profile im Klassenzimmer). Frankfurt am Main: Peter Lang.Google Scholar
  10. Brandt, B. (2006). Children as learners in mathematics classrooms in primary school (Kinder als Lernende im Mathematikunterricht der Grundschule). In H. Jungwirth & G. Krummheuer (Eds.), Der Blick nach innen. Aspekte der alltäglichen Lebenswelt Mathematikunterricht (pp. 19–51). Münster: Waxmann.Google Scholar
  11. Brandt, B. (2013). Everyday pedagogical practices in mathematical play situations in German “Kindergarten”. Educational Studies in Mathematics, 84(2), 227–248.CrossRefGoogle Scholar
  12. Brandt, B. (2014). I have little job for you. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning selected papers of the POEM 2012 conference (pp. 55–70). New York: Springer.Google Scholar
  13. Bruner, J. (1978). The role of dialogue in language acquisition. In A. Sinclair, R. Jarvella, & W. J. M. Levelt (Eds.), The child’s conception of language (pp. 241–256). New York: Springer.Google Scholar
  14. Bruner, J. S. (1983). Play, thought, and language. Peabody Journal of Education, 60(3), 60–69.CrossRefGoogle Scholar
  15. Bruner, J. S. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University Press.Google Scholar
  16. Bruner, J. S. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.Google Scholar
  17. Bruner, J. S. (1996). The culture of education. Cambridge, MA: Harvard University Press.Google Scholar
  18. Bullock, J. R. (1992). Learning through block play. Early Childhood Education Journal, 19(3), 16–18. doi: 10.1007/BF01617077. Netherlands: Springer.CrossRefGoogle Scholar
  19. Bundesministerium für Familie, Senioren, Frauen und Jugend (BMFuS). (2002). The importance of education-policy of families—Conclusions of PISA study (Die bildungspolitische Bedeutung der Familie—Folgerungen aus der PISA-Studie). Wissenschaftlicher Beirat für Familienfragen, Band 224. Stuttgart: W. Kohlhammer.Google Scholar
  20. Cartwright, S. (1988). Play can be the building blocks of learning. Young Children, 43, 44–47.Google Scholar
  21. Clements, D. H., & Sarama, J. (2007). Early childhood mathematics learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 461–555). New York: Information Age.Google Scholar
  22. Cobb, P. (2000a). Constructivism. In A. E. Kazdin (Ed.), Encyclopedia of psychology (Vol. 2, pp. 277–279). Washington, DC: American Psychological Association and Oxford University Press.Google Scholar
  23. Cobb, P. (2000b). Constructivism in social context. In L. P. Steffe & P. W. Thompson (Eds.), Radical constructivism in action: Building on the pioneering work of Ernst van Glasersfeld (pp. 152–178). London: Falmer.Google Scholar
  24. Cobb, P. (2000c). The importance of a situated view of learning to the design of research and instruction. In J. Boaler (Ed.), Multiple perspectives on mathematical teaching and learning (pp. 45–82). Stamford, CT: Ablex.Google Scholar
  25. Cobb, P., & Bauersfeld, H. (1995). Emergence of mathematical meaning: Instruction in classroom cultures. Hillsdale, NJ: Erlbaum.Google Scholar
  26. Cobb, P., & McClain, K. (2001). An approach for supporting teachers’ learning in social content. In F. L. Lin & T. Cooney (Eds.), Making sense of mathematics teacher education (pp. 207–231). Dordrecht: Kluwer.CrossRefGoogle Scholar
  27. Cobb, P., Wood, T., & Yackel, E. (1993). Discourse, mathematical thinking, and classroom practice. In E. A. Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development (pp. 91–119). New York: Oxford University Press.Google Scholar
  28. Cobb, P., Yackel, E., & McClain, K. (2000). Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design. Mahwah, NJ: Erlbaum.Google Scholar
  29. Doron, H. (2009). Birth order, traits and emotions in the sibling system as predictive factors of couple relationships. The Open Family Studies Journal, 2, 23–30.CrossRefGoogle Scholar
  30. Ernest, P. (1991). The philosophy of mathematics education. London: Routledge Falmer.Google Scholar
  31. Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany, NY: State University of New York Press.Google Scholar
  32. Goodfellow, J., & Laverty, J. (2003). Grandparents supporting working families. Satisfaction and choice in the provision of child care. Family Matters, 66, 14–19.Google Scholar
  33. Hawighorst, B. (2000). Mathematics education in the context of the family. An intercultural comparison of parents’ education aspirations (Mathematische Bildung im Kontext der Familie. Über einen interkulturellen Vergleich elterlicher Bildungsorientierungen). Zeitschrift für Erziehungswissenschaft, 10.Jahrg.Heft 1/2007, 31–48.Google Scholar
  34. Hewitt, K. (2001). Blocks as a tool for learning: Historical and contemporary perspectives. The Journal of the National Association of Young Children, 56, 6–13.Google Scholar
  35. Hughes, M. (1986). Young children learning in the community, in involving parents in the primary curriculum. Exeter: Exeter University.Google Scholar
  36. Kersh, J. E., Casey, B., & Young, J. M. (2008). Research on spatial skills and block building in girls and boys. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 233–251). New York: Information Age.Google Scholar
  37. Kim, J., & Fram, M. S. (2009). Profiles of choice: Parents’ patterns of priority in child care decision-making. Early Childhood Research Quarterly, 24(1), 77–91.CrossRefGoogle Scholar
  38. Krummheuer, G. (2011a). The interactional niche in the development of mathematical thinking (Die Interaktionale Nische mathematischer Denkentwicklung). Beiträge zum Mathematikunterricht 2011 (pp. 495–498). Münster: WTM.Google Scholar
  39. Krummheuer, G. (2011b). The empirical founded derivation of the term the “interactional niche in the development of mathematical thinking” (Die empirisch begründete Herleitung des Begriffs der “Interaktionalen Nische mathematischer Denkentwicklung”). In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Education” (IDeA) (Vol. 1, pp. 25–90). Münster: Waxmann.Google Scholar
  40. Krummheuer, G. (2011c). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (The International Journal on Mathematics Education), 43(1), 81–90. doi: 10.1007/s11858-010-0294-1.CrossRefGoogle Scholar
  41. Krummheuer, G. (2011d, November 8). The interaction analysis. Arithmetical problem on the shirt numbers (Die Interaktionsanalyse. Rechenaufgabe mit Trikot-Rückennummern), 1–8. Retrieved from http://www.fallarchiv.uni-kassel.de/wp-content/uploads/2011/01/krumm_trikot_ofas.pdf.
  42. Krummheuer, G. (2012). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “interactional niche in the development of mathematical thinking” (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338.CrossRefGoogle Scholar
  43. Krummheuer, G. (2014). Adaptability as a developmental aspect of mathematical thinking in the early years. In Proceedings of the second congress of a mathematics education perspective on early mathematics learning between the poles of instruction and construction. Retrieved from http://www.mah.se/english/faculties/Faculty-of-education-and-society/A-Mathematics-Education-Perspective-on-early-Mathematics-Learning-between-the-Poles-of-Instruction-and-Construction-POEM/Online-Proceedings/.
  44. Krummheuer, G., & Brandt, B. (2001). Paraphrase and traduction. Participation theoretical elements of interaction theory of mathematics learning in the primary school (Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule). Weinheim: Beltz Wissenschaft Deutsche Studien.Google Scholar
  45. Krummheuer, G., & Schütte, M. (2014). The change between mathematical domains—A competence, which doesn’t exist in educational standards (Das Wechseln zwischen mathematischen Inhaltsbereichen—Eine Kompetenz, die nicht in den Bildungsstandards steht). Zeitschrift für Grundschulforschung, 7(1), 126–128. ISSN:1865-3553.Google Scholar
  46. Krummheuer, G., & Schütte, M. (in this book). Adaptability as a developmental aspect of mathematical thinking in the early years. In T. Meaney, T. Lange, A. Wernberg, O. Helenius, & M. L. Johansson (Eds.), Mathematics education in the early years—Results from the POEM conference 2014. Cham: Springer.Google Scholar
  47. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press. ISBN 0-521-42374-0.CrossRefGoogle Scholar
  48. Nader-Grosbois, N., Normandeau, S., Ricard-Cossette, M., & Quintal, G. (2008). Mother’s, father’s regulation and child’s self-regulation in a computer-mediated learning situation. European Journal of Psychology of Education, XXIII(1), 95–115.CrossRefGoogle Scholar
  49. Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49, 345–375.CrossRefGoogle Scholar
  50. Paradise, R., & Rogoff, B. (2009). Side by side: Learning by observing and pitching in. Ethos, 37(1), 102–138.CrossRefGoogle Scholar
  51. Pound, L. (2006). Supporting mathematical development in the early years (2nd ed.). Buckingham: Open University Press.Google Scholar
  52. Rogoff, B. (1990). Apprenticeship in thinking. New York: Oxford University Press.Google Scholar
  53. Rogoff, B., Ellis, S., & Gardner, W. (1984). Adjustment of adult-child instruction according to child’s age and task. Developmental Psychology, 20(2), 193–199.CrossRefGoogle Scholar
  54. Sfard, A. (2001). Learning discourse: Sociocultural approaches to research in mathematics education. Educational Studies in Mathematics, 46(1/3), 1–12.CrossRefGoogle Scholar
  55. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. Smith, P. K. (2005). Grandparents and Grandchildren. The Psychologist, 18(11), 684–687.Google Scholar
  57. Smith, P. K., & Drew, L. M. (2002). Grandparenthood. In M. H. Bornstein (Ed.), Handbook of parenting: Volume 3. Being and becoming a parent (pp. 141–172). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  58. Tiedemann, K. (2010). Support in mother-child discourses: Functional observation of an interaction routine (Support in mathematischen Mutter-Kind-Diskursen: Funktionale Betrachtung einer Interaktionsroutine). In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren interpretativer Unterrichtsforschung in der Mathematikdidaktik: Götz Krummheuer zum 60. Geburtstag (pp. 149–175). Münster: Waxmann.Google Scholar
  59. Tiedemann, K. (2012). Mathematics in the family. The familial support of early mathematics learning in the storybook reading situations and playsituations (Mathematik in der Familie. Zur familialen Unterstützung früher mathematischer Lernprozesse in Vorlese- und Spielsituationen). Münster: Waxmann.Google Scholar
  60. Vandermaas-Peeler, M. (2008). Parental guidance of numeracy development in early childhood. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 277–290). Charlotte, NC: Information Age.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations