“I Spy with My Little Eye”: Children Comparing Lengths Indirectly

  • Johanna ZöllnerEmail author
  • Christiane Benz


In preschool settings, learning takes place in informal situations, which can make it very challenging for preschool teachers to identify learning possibilities or “teachable moments”. Because children in preschool often deal with length in their daily life, many teachable moments can be identified in situations when children are comparing and measuring length. Fostering children’s competencies in the area of length in informal natural learning situations needs preschool teachers to have pedagogical content knowledge about comparing and measuring in order to “see” or perceive these competencies in children’s activities. This knowledge is the basis for identifying natural learning situations. Competencies required for comparing lengths indirectly will be analysed in this chapter.


Pedagogical Content Knowledge Identity Format Indirect Comparison Preschool Teacher Measuring Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acredolo, C. (1982). Conservation—nonconservation: Alternative explanations. In C. J. Brainerd (Ed.), Children’s logical and mathematical cognition (pp. 1–31). New York: Springer.CrossRefGoogle Scholar
  2. Barrett, J. E., Jones, G., Thornton, C., & Dickson, S. (2003). Understanding children’s developing strategies and concepts for length. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement (pp. 17–30). Reston, VA: National Council of Teachers of Mathematics. 2003 Yearbook.Google Scholar
  3. Battista, M. T. (2006). Understanding the development of students’ thinking about length. Teaching Children Mathematics, 13(3), 140–146.Google Scholar
  4. Benz, C. (2012, July 8–15). Learning to see—Representation, perception and judgement of quantities of numbers as a task for in-service teacher education in preschool education. Paper presented at the 12th international congress on mathematical education, Seoul, Korea.Google Scholar
  5. Benz, C., Peter-Koop, A., & Grüßing, M. (2015). Frühe mathematische Bildung. Mathematiklernen der Drei-bis Achtjährigen [Early mathematical education]. Heidelberg: Springer.Google Scholar
  6. Boulton-Lewis, G. M., Wilss, L. A., & Mutch, S. L. (1996). An analysis of young children’s strategies and use of devices for length measurement. Journal of Mathematical Behaviour, 15, 329–347.CrossRefGoogle Scholar
  7. Bush, H. (2009). Assessing children’s understanding of length measurement: A focus on three key concepts. Australian Primary Mathematics Classroom, 14(4), 29–32.Google Scholar
  8. Carpenter, T. P. (1971). The role of equivalence and order relations in the development and coordination of the concepts of unit size and number in selected conservation type measurement problems. Report from the Project on Analysis of Mathematics Instruction (Tech. Rep. No. 178). Madison, WI: University of Wisconsin.Google Scholar
  9. Carpenter, T. P., & Lewis, R. (1976). The development of the concept of a standard unit of measure in young children. Journal for Research in Mathematics Education, 7(1), 53–58.CrossRefGoogle Scholar
  10. Clements, D. H., & Sarama, J. (2009). Learning and teaching early math. The learning trajectories approach. New York: Routledge.Google Scholar
  11. Clements, D. H., & Stephan, M. (2004). Measurement in pre-k to grade 2 mathematics. In H. D. Clements, J. Sarama, & A. DiBiase (Eds.), Engaging young children in mathematics. Standards for early childhood mathematics education (pp. 299–320). Mahwah, NJ: Erlbaum.Google Scholar
  12. Cross, C. T., Woods, T. A., & Schweingruber, H. (2009). Mathematics learning in early childhood: Paths toward excellence an equity. Washington, DC: National Academy of Sciences.Google Scholar
  13. Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche. Der Beitrag von Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten [Prediction of arithmetic ability and dyscalculia. The contribution of numerical knowledge and general cognitive abilities]. Berlin: Logos.Google Scholar
  14. Elkind, D. (1967). Piaget’s conservation problems. Child development, 38, 15–27.CrossRefGoogle Scholar
  15. Franke, M., & Ruwisch, S. (2010). Didaktik des Sachrechnens in der Grundschule [Didactics of practical arithmetic in primary school] (2nd ed.). Heidelberg: Spektrum.CrossRefGoogle Scholar
  16. Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte. Grundlegung und Evaluation eines kompetenzorientierten Förderansatzes [Elementary mathematics education in everyday life in kindergarten]. Münster: Waxmann.Google Scholar
  17. Ginsburg, H. P., Lee, J. S., & Boyd, J. S. (2008). Mathematics education for young children: What it is and how to promote it. Social Policy Report, 22(1), 3–22.Google Scholar
  18. Griesel, H. (1996). Grundvorstellungen zu Größen [Basic ideas for measurement]. Mathematik lehren, 78, 15–19.Google Scholar
  19. Heuvel-Panhuizen, M. van den, & Elia, I. (2011). Kindergartners’ performance in length measurement and the effect of picture book reading. ZDM: The international Journal on Mathematics Education, 43(5), 621–635.Google Scholar
  20. Hiebert, J. (1981). Results and implications from national assessment. Arithmetic Teacher, 26(6), 38–43.Google Scholar
  21. Hiebert, J. (1984). Why do some children have trouble learning measurement concepts? Arithmetic Teacher, 31(7), 19–24.Google Scholar
  22. Kamii, C. (2006). Measurement of length: How can we teach it better? Teaching Children Mathematics, 13(3), 154–158.Google Scholar
  23. Krajewski, K. (2013). Wie bekommen Zahlen einen Sinn? Ein entwicklungspsychologisches Modell zur zunehmenden Verknüpfung von Zahlen und Größen [How do numbers get a meaning? A developmental psychological model concerning the relationship of numbers and measurement]. In M. Aster & J. H. Lorenz (Eds.), Rechenstörungen bei Kindern. Neurowissenschaft, Psychologie, Pädagogik [Arithmetic disability of children, neuroscience, psychology and pedagogy] (2nd ed., pp. 155–180). Göttingen: Vandenhoeck & Ruprecht.CrossRefGoogle Scholar
  24. Lefrancois, G. R. (1994). Psychologie des Lernens [Psychology of learning]. Berlin: Springer.CrossRefGoogle Scholar
  25. Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, G. W. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 179–192). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  26. Mitchell, A. E. (2011). Interpreting students’ explanations of fraction tasks, and their connections to length and area knowledge (doctoral dissertation, Australian Catholic University).Google Scholar
  27. McDonough, A., & Sullivan, P. (2011). Learning to measure length in the first three years of school. Australian Journal of Early Childhood, 36(3), 27–35.Google Scholar
  28. Nührenbörger, M. (2002). Denk- und Lernwege von Kindern beim Messen von Längen. Theoretische Grundlegung und Fallstudien kindlicher Längenkonzepte im Laufe des 2. Schuljahres [Children’s ways to think and to learn in situations of measurement with length]. Hildesheim: Franzbecker.Google Scholar
  29. Osborne, A. R. (1976). The mathematical and psychological foundations of measure. In R. A. Bradbard & D. A. Lesh (Eds.), Number and measurement. Papers from a research workshop (pp. 19–46). Columbus, OH: ERIC Clearinghouse of Science, Mathematics and Environmental Education.Google Scholar
  30. Piaget, J., Inhelder, B., & Szeminska A. (1974). Die natürliche Geometrie des Kindes [The child’s conception of geometry] (R. Heipke Trans.). Stuttgart: Klett (Original work published 1948).Google Scholar
  31. Schmidt, S., & Weiser, W. (1986). Zum Maßzahlverständnis von Schulanfängern [About the knowledge of measure of children starting school]. Journal für Mathematikdidaktik, 7(2/3), 121–154.CrossRefGoogle Scholar
  32. Zöllner, J. (in preparation). Das Längenkonzept von Kindergartenkindern [The concept of length of young children].Google Scholar
  33. Zöllner, J., & Benz, C. (2013, February 6). How four to six year old children compare length indirectly. Paper presented at the eight congress of European research in mathematics education (Cerme8), Antalya, Turkey. Online:

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Education KarlsruheKarlsruheGermany

Personalised recommendations