MaiKe: A New App for Mathematics in Kindergarten

  • Anna Susanne SteinwegEmail author


Increasing availability of tablets at home—even for the youngest ones—is a fact. Therefore, research on mathematical play and learning apps is of growing importance. The project MaiKe (Mathematik im Kindergarten entdecken) develops its own and mathematically sound app. MaiKe regards and reflects in concept, development and design both developmental psychology and mathematics educational findings and research. MaiKe takes into account the broad range of competencies which are considered to promote a successful school beginning. The concept and design information about the app as well as concrete examples of technical realisation and use are given.


Mathematical Learning Mathematical Content Kindergarten Child Mathematical Correctness Early Mathematics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anders, Y., Rossbach, H., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., et al. (2012). Home and preschool learning environments and their relations to the development of early numeracy skills. Early Childhood Research Quarterly, 27(2), 231–244.CrossRefGoogle Scholar
  2. Benz, C. (2012a). Maths is not dangerous—Attitudes of people working in German kindergarten about mathematics in kindergarten. European Early Childhood Education Research Journal, 20(2), 249–261.CrossRefGoogle Scholar
  3. Benz, C. (2012b). Attitudes of kindergarten educators about math. Journal für Mathematikdidaktik, 33(2), 203–232.CrossRefGoogle Scholar
  4. Benz, C. (2014). Identifying quantities—Children’s constructions to compose collections from parts or decompose collections into parts. In U. Kortenkamp et al. (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 189–203). New York: Springer.Google Scholar
  5. Benz, C. (2016). Reflection: An opportunity to address different aspects of professional competencies in mathematics education. In T. Meaney, T. Lange, A. Wernberg, O. Helenius, & M. L. Johansson (Eds.), Mathematics education in the early years—Results from the POEM conference 2014. Cham: Springer.Google Scholar
  6. Benz, C., Peter-Koop, A., & Grüßing, M. (2015). Frühe Mathematische Bildung [Early mathematics education]. Berlin: Springer.Google Scholar
  7. Bredekamp, S. (2004). Standards for preschool and kindergarten mathematics education. In D. Clements & J. Sarama (Eds.), Engaging young children in mathematics—Standards for early childhood mathematics education (pp. 77–82). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  8. Brownell, J., Chen, J.-Q., & Ginet, L. (2014). Big ideas of early mathematics: What teachers of young children need to know. Boston: Pearson.Google Scholar
  9. Clements, D., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching Children Mathematics, 8(6), 340–343.Google Scholar
  10. Clements, D., & Sarama, J. (2007). Early childhood mathematics education research—Learning trajectories for young children. New York: Routledge.Google Scholar
  11. Devlin, K. (1997). Mathematics: The science of patterns. New York: Scientific American Library.Google Scholar
  12. Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche [Prediction of numeracy competence and numeracy difficulty]. Berlin: Logos.Google Scholar
  13. Feynman, R. P. (1995). What is science? In D. K. Nachtigall (Ed.), Internalizing physics: Making physics part of one’s life: eleven essays of Nobel laureates (pp. 99–112). Paris: United Nations Educational, Scientific and Cultural Organization.Google Scholar
  14. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer.CrossRefGoogle Scholar
  15. Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte [Elementary mathematics education in daily routine kindergarten]. Münster: Waxmann.Google Scholar
  16. Gasteiger, H. (2012). Fostering early mathematical competencies in natural learning situations—Foundation and challenges of a competence-oriented concept of mathematics education in kindergarten. Journal für Mathematik-Didaktik, 33(2), 181–201.CrossRefGoogle Scholar
  17. Gasteiger, H. (2013). Förderung elementarer mathematischer Kompetenzen durch Würfelspiele—Ergebnisse einer Interventionsstudie [Fostering elementary mathematics competencies by dice games—Results of an intervention study]. In G. Greefrath et al. (Eds.), Beiträge zum Mathematikunterricht 2013 (pp. 336–339). Münster: WTM.Google Scholar
  18. Gasteiger, H., & Benz, C. (2012). Mathematiklernen im Übergang—kindgemäß, sachgemäß und anschlussfähig [Learning mathematics during transition—Child appropriate, topic appropriate, and connective]. In S. Pohlmann-Rother & U. Franz (Eds.), Kooperation von KiTa und Grundschule (pp. 104–120). Köln: Wolters Kluwer.Google Scholar
  19. Hundeland, P. S., Erfjord, I., & Carlsen, M. (2013). Use of digital tools in mathematical learning activities in the kindergarten: Teachers’ approaches. In B. Ubuz et al. (Eds.), Proceedings of the eighth congress of European research in mathematics education (pp. 2108–2117). Ankara: Middle East Technical University.Google Scholar
  20. KMK—Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany. (2013). The education system in the Federal Republic of Germany 2011/2012—Early childhood education and care. Accessed 22 June 2015.
  21. Krauthausen, G. (1995). Die ‘Kraft der Fünf’ und das denkende Rechnen [The power of five and thoughtful numeracy]. In G. Müller & E. Wittmann (Eds.), Mit Kindern rechnen (pp. 87–108). Frankfurt & Main: Der Grundschulverband e.V.Google Scholar
  22. Krauthausen, G. (2012). Digitale Medien im Mathematikunterricht der Grundschule [Digitale media in primary school mathematics education]. Berlin: Springer.CrossRefGoogle Scholar
  23. Kupferman, R., & Schocken, S. (2013). The Matific approach to early-age math education. Accessed 22 June 2015.
  24. Lange, T., & Meaney, T. (2013). iPads and mathematical play: A new kind of sandpit for young children. In B. Ubuz et al. (Eds.), Proceedings of the eighth congress of European research in mathematics education (pp. 2138–2147). Ankara: Middle East Technical University.Google Scholar
  25. Maier, A. S., & Benz, C. (2014). Children’s constructions in the domain of geometric competencies (in two different instructional settings). In U. Kortenkamp et al. (Eds.), Early mathematics learning: Selected papers of the POEM 2012 conference (pp. 173–187). New York: Springer.CrossRefGoogle Scholar
  26. NAEYC (National association for the education of young children) & NCTM (National council for teachers of mathematics). (2002/updated 2010). Early childhood mathematics: Promoting good beginnings. Accessed 22 June 2015.
  27. Presmeg, N. (2014). A dance of instruction with construction in mathematics education. In U. Kortenkamp et al. (Eds.), Early mathematics learning: Selected papers of the POEM 2012 conference (pp. 9–17). New York: Springer.CrossRefGoogle Scholar
  28. Steinweg, A. S. (2008). Zwischen Kindergarten und Schule—Mathematische Basiskompetenzen im Übergang [Between kindergarten and school—Basic mathematics competencies in the transition period]. In F. Hellmich & H. Köster (Eds.), Vorschulische Bildungsprozesse in Mathematik und in den Naturwissenschaften (pp. 143–159). Bad Heilbrunn: Klinkhardt.Google Scholar
  29. Steinweg, A. S., & Weth, T. (2014). Auch das noch? Tablets im Kindergarten [Really? Tablets in kindergarten]. In J. Roth & J. Ames (Eds.), Beiträge zum Mathematikunterricht 2014—Band 2 (pp. 1167–1170). Münster: WTM.Google Scholar
  30. Thiel, O. (2010). Teachers’ attitudes towards mathematics in early childhood education. European Early Childhood Education Research Journal, 18(1), 105–115.CrossRefGoogle Scholar
  31. van Hiele, P. M. (1976). Wie kann man im Mathematikunterricht den Denkstufen Rechnung tragen? [How can thinking-steps be addressed in mathematics education?]. Educational Studies in Mathematics, 7(1–2), 157–169.CrossRefGoogle Scholar
  32. van Luit, J., van de Rijt, B., & Hasemann, K. (2001). Osnabrücker Test zur Zahlbegriffsentwicklung [Osanbruecker number-concept-test]. Göttingen: Hogrefe.Google Scholar
  33. van Oers, B. (2004). Mathematisches Denken bei Vorschulkindern [Mathematical thinking of preschool-children]. In W. E. Fthenakis & P. Oberhuemer (Eds.), Frühpädagogik international. Bildungsqualität im Blickpunkt (pp. 313–330). Wiesbaden: VS Verlag für Sozialwissenschaften.CrossRefGoogle Scholar
  34. van Oers, B. (2014). The roots of mathematising in young children’s play. In U. Kortenkamp et al. (Eds.), Early mathematics learning: Selected papers of the POEM 2012 conference (pp. 111–123). New York: Springer.CrossRefGoogle Scholar
  35. Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.Google Scholar
  36. Wittmann, E. (1995). Mathematics education as a ‘design science’. Educational Studies in Mathematics, 29(4), 355–374.CrossRefGoogle Scholar
  37. Wittmann, E. (1998). Standard number representations in the teaching of arithmetic. Journal für Mathematikdidaktik, 19(2/3), 149–178.CrossRefGoogle Scholar
  38. Wittmann, E. (2009). Das Zahlenbuch—Handbuch zur Frühförderung [The number book—Handbook of early support]. Stuttgart: Klett.Google Scholar
  39. Wittmann, E. (2010). Grundsätzliche Überlegungen zur frühkindlichen Bildung in der Mathematik [Fundamental thoughts about early education in mathematics]. In M. Stamm & D. Edelmann (Eds.), Frühkindliche Bildung, Betreuung und Erziehung. Was kann die Schweiz lernen? (pp. 177–195). Zürich: Rüegger.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of BambergBambergGermany

Personalised recommendations