Advertisement

The Relationship Between Equivalence and Equality in a Nonsymbolic Context with Regard to Algebraic Thinking in Young Children

  • Nathalie Silvia Anwandter CuellarEmail author
  • Manon Boily
  • Geneviève Lessard
  • Danielle Mailhot
Chapter

Abstract

In this chapter, we analyze the process of developing algebraic thinking in children, as it relates to the necessary conceptualization giving meaning to the ideas underpinning the basic rules of algebra. In recent years, the National Council of Teachers of Mathematics and the Ontario Ministry of Education continue to provide resources for the development of algebraic reasoning, starting in early childhood. In early childhood, the relationship between equivalence and equality is a key element that integrates different facets of the development of numerical. We analyze algebraic thinking by examining mathematics-related tasks completed by twenty-one 5-year-old children. Our purpose is to highlight the use of landmark strategies, big ideas, and models, in regard to equivalence and equality and their role in the development of early algebraic reasoning.

Keywords

Early childhood Algebraic learning Mathematical equivalence Equality 

References

  1. Alibali, M. W. (1999). How children change their minds: Strategy change can be gradual or abrupt. Developmental Psychology, 35, 127–145.CrossRefGoogle Scholar
  2. Alibali, M. W., Knuth, E. J., McNeil, N. M., & Stephens, A. C. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297–312. Retrieved from http://www.region11mathandscience.org/archives/files/equality/Trainers/EqualSignJRMEKnuth.pdf.
  3. Beatty, R., & Bruce, C. (2012). From patterns to algebra: Lessons for exploring linear relationships. Toronto, ON: Nelson.Google Scholar
  4. Bergeron, J. C., & Herscovics, N. (1988). The kindergartners understanding of discrete quantity. In A. Borbas (Ed.), Proceedings of the twelfth annual conference of the International Group for the Psychology of Mathematics Education, Veszprem, Hungary (pp. 162–169). Retrieved from http://files.eric.ed.gov/fulltext/ED411128.pdf.
  5. Bergeron, A., Herscovics, N., & Bergeron, J. C. (1987). Kindergartners’ knowledge of numbers: A longitudinal case study, Part I: Intuitive and procedural understanding. In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the 11th psychology of mathematics education conference (Vol. II, pp. 88–97). Montreal: University de Montreal.Google Scholar
  6. Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in the elementary school. Portsmouth, NH: Heinemann.Google Scholar
  7. D’Aoust, L. (2011). Fafounet et la chasse aux cocos de Pâques [The story of Fafounet and the Easter Egg Hunt]. Montréal, QC: Les Malins.Google Scholar
  8. Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6, 232–236. Retrieved from http://ncisla.wceruw.org/publications/articles/AlgebraNCTM.pdf.Google Scholar
  9. Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38, 258–288. Retrieved from http://homepages.math.uic.edu/~martinez/PD-EarlyAlgebra.pdf.Google Scholar
  10. Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. Paper presented at the Algebra Symposium, Washington, DC.Google Scholar
  11. Kaput, J. J. (1999). Teaching and learning a new algebra. In E. Fennema & T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133–155). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  12. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317–326.CrossRefGoogle Scholar
  13. Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th The international congress on mathematical education: Selected lectures (pp. 271–290). Seville: S.A.E.M. Thales.Google Scholar
  14. Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12th ICMI Study (pp. 21–34). New York: Kluwer.CrossRefGoogle Scholar
  15. Knuth, E., Stephens, A., McNeil, N., & Alibali, M. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37(4), 297–312.Google Scholar
  16. McNeil, M. M., & Alibali, W. M. (2005). Knowledge change as a function of mathematics experience: All contexts are not created equal. Journal of Cognition and Development, 6, 285–306. Retrieved from http://www3.nd.edu/~nmcneil/McNeilAlibali05a.pdf.CrossRefGoogle Scholar
  17. Mix, K. S. (1999). Similarity and numerical equivalence: Appearances count. Cognitive Development, 14, 269–297.CrossRefGoogle Scholar
  18. Mix, K. S., Huttenlocher, J., & Levine, S. C. (1996). Do preschool children recognize auditory–visual numerical correspondences? Child Development, 67, 1592–1608.CrossRefGoogle Scholar
  19. Ontario Ministry of Education. (2008). Guide d’enseignement efficace des mathématiques de la maternelle à la 3 e année Modélisation et algèbre. Fascicule 2, Situations d’égalité [A Guide to Effective Instruction in Mathematics Kindergarten to Grade 3, Patterning and Algebra]. Toronto, ON: Queen’s Printer for Ontario.Google Scholar
  20. Ontario Ministry of Education. (2013). Paying attention to algebraic reasoning: K-12. Toronto, ON: Queen’s Printer for Ontario.Google Scholar
  21. Piaget, J. (1994). La formation du symbole chez l’enfant, imitation, jeu et rêve, image et représentation [The formation of symbols in infancy. Imitation, play, and dream. Image and representation] (8th ed.). Neuchatel: Delachaux et Niestlé.Google Scholar
  22. Sáenz-Ludlow, A., & Walgamuth, C. (1998). Third graders’ interpretations of equality and the equal symbol. Educational Studies in Mathematics, 35, 153–187.CrossRefGoogle Scholar
  23. Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and non-symbolic contexts: Benefits of solving problems with manipulatives. Journal of Educational Psychology, 101, 88–100.CrossRefGoogle Scholar
  24. Squalli, H. (2002). Le développement de la pensée algébrique à l’école primaire : un exemple de raisonnements à l’aide de concepts mathématiques [The development of algebraic thinking in elementary school : An example of reasoning using mathematical concepts]. Instantanés mathématiques, 39, 4–13.Google Scholar
  25. Squalli, H. (2007). Le développement de la pensée algébrique à l’école primaire : un exemple de raisonnements à l’aide de concepts mathématiques [The development of algebraic thinking in elementary school : An example of reasoning using mathematical concepts]. Site de Math Vip, Mathématique virtuelle à l’intention du primaire. Retrieved from http://spip.cslaval.qc.ca/mathvip/article.php3?id_article=56.
  26. Taylor-Cox, J. (2003). Algebra in the early years? Yes! Young Children, 58(1), 14–21. Retrieved from www.journal.naeyc.org/btj/200301/Algebra.pdf.Google Scholar
  27. Theis, L. (2005). Les tribulations du signe “=” dans la moulinette de la bonne réponse [The trials and tribulations of the “=” sign in the mill of the correct answer]. Coll. “Mathèse”. Montréal: Éditions Bande didactique.Google Scholar
  28. Twomey Fosnot, C., & Dolk, M. (2010). Jeunes mathématiciens en action [Young mathematicians at work]. Montréal, QC: Chenelière.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nathalie Silvia Anwandter Cuellar
    • 1
    Email author
  • Manon Boily
    • 2
  • Geneviève Lessard
    • 1
  • Danielle Mailhot
    • 1
  1. 1.Université du Québec à OutaouaisGatineauCanada
  2. 2.Université du Québec à MontréalGatineauCanada

Personalised recommendations