Advertisement

“Similar and Equal…”: Mathematically Creative Reflections About Solids of Children with Different Attachment Patterns

  • Melanie BeckEmail author
Chapter

Abstract

This chapter deals with mathematically creative processes in early childhood. The concept of the interactional niche in the development of mathematical creativity is introduced, which combines interactionistic theories of socio-constructivism, sociocultural theories, and a psychoanalytically based attachment theory in order to describe mathematically creative processes of children during early childhood development. Data are collected in the interdisciplinary project Mathematical Creativity of Children. Two empirical cases of children and their mathematically creative processes, from engaging in a task in a cooperative mathematical situation, are presented.

Keywords

Exploratory Behavior Creative Process Creative Action Attachment Figure Attachment Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The preparation of this chapter was funded by the federal state government of Hessen (LOEWE initiative).

References

  1. Ainsworth, M. D., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment. Hillsdale, NJ: Erlbaum.Google Scholar
  2. Bateson, P., & Martin, P. (2013). Play, playfulness, creativity and innovation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Benson, J. B., & Haith, M. M. (2009). Social and emotional development in infancy and early childhood. Oxford, UK: Academic Press.Google Scholar
  4. Bowlby, J. (1969). Attachment. Attachment and loss (Vol. 1). New York: Basic Books.Google Scholar
  5. Brandom, R. B. (2000). Begründen und Begreifen [Articulating reasons]. Frankfurt a.M: Suhrkamp.Google Scholar
  6. Brandt, B. (2004). Kinder als Lernende: Partizipationsspielräume und -profile im Klassenzimmer [Children as learners. Leeway of participation and profile of participation in classroom]. Frankfurt a. M.: Peter Lang.Google Scholar
  7. Brandt, B., & Krummheuer, G. (2001). Paraphrase und Traduktion: Parti-zipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule [Paraphrase and traduction]. Weinheim: Beltz.Google Scholar
  8. Bruner, J. (1986). Actual minds: Possible worlds. Cambridge, MA: Harvard University Press.Google Scholar
  9. Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.Google Scholar
  10. Carruthers, E., & Worthington, M. (2011). Understanding children’s mathematical graphics beginnings in play. New York: Open University Press.Google Scholar
  11. Creasy, G., & Jarvis, P. (2003). Play in children. An attachment perspective. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on play in early childhood education (pp. 133–153). Charlotte, NC: Information Age.Google Scholar
  12. Crowell, J., & Feldman, S. (1988). Mother’s internal models of relationships and children’s behaviour and developmental status: A study of mother-infant-interaction. Child Development, 59, 1273–1285.CrossRefGoogle Scholar
  13. Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. New York: Harper Perennial.Google Scholar
  14. Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht: Kluwer.Google Scholar
  15. Finke, R. (1990). Creative imagery. Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  16. Green, J., Stanley, C., Smith, V., & Goldwyn, R. (2000). A new method of evaluating attachment representations in the young school age children: The Manchester child attachment story task (MCAST). Attachment and Human Development, 2, 48–70.CrossRefGoogle Scholar
  17. Grossmann, K. (1984). Zweijährige Kinder im Zusammenspiel mit ihren Müttern, Vätern, einer fremden Erwachsenen und in einer Überaschungssituation. Beobachtungen aus bindungs- und kompetenztheoretischer Sicht [Two year olds in joint play with their mothers, fathers, a stranger and in a surprise situation: Observations from the attachment and competence viewpoint]. Regensburg: Universität Regensburg.Google Scholar
  18. Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.Google Scholar
  19. Krummheuer, G. (1997, March 24–28). Reflexive arguing in elementary school classes: Opportunities for learning. Paper presented at the annual meeting of the American Research Association, Chicago, IL. http://files.eric.ed.gov/fulltext/ED409109.pdf. Accessed 19 June 2015.
  20. Krummheuer, G. (2012). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “interactional niche in the development of mathematical thinking” (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338. doi: 10.1007/s13138-012-0040-z.CrossRefGoogle Scholar
  21. Krummheuer, G., Leuzinger-Bohleber, M., Müller-Kirchof, M., Münz, M., & Vogel, R. (2013). Explaining the mathematical creativity of a young boy: An interdisciplinary venture between mathematics education and psychoanalysis. Educational Studies in Mathematics, 84(2), 183–200. doi: 10.1007/s10649-013-9505-3.CrossRefGoogle Scholar
  22. Krummheuer, G., & Schütte, M. (2014). Das Wechseln zwischen mathematischen Inhaltsbereichen—Eine Kompetenz, die nicht in den Bildungsstandards steht [The changing between mathematical domains—A competence that is not mentioned in the educational standards]. Zeitschrift für Grundschulforschung, 7, 126–138.Google Scholar
  23. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  24. Lehmann, B. E. (1988). Rationalität im Alltag? Zur Konstitution sinnhaften Handelns in der Perspektive interpretativer Soziologie [Rationality in everyday life? Construction of meaningful acting in the perspective of interpretative sociology]. Münster: Waxmann.Google Scholar
  25. Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255–276. doi: 10.1007/s10649-007-9104-2.CrossRefGoogle Scholar
  26. Marvin, R. S., & Britner, P. A. (1999). Normative development: Ontogeny of attachment. In J. Cassidy & P. Shaver (Eds.), Handbook of attachment: Theory and research (pp. 44–67). New York: Guilford Press.Google Scholar
  27. Mikulincer, M., & Shaver, P. (2007). Attachment in adulthood: Structure, dynamics, and change. New York: Guilford Press.Google Scholar
  28. Münz, M. (2014). Non-canonical solutions in children-adult interactions: A case study of the emergence of mathematical creativity. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning (pp. 125–146). New York: Springer.CrossRefGoogle Scholar
  29. Rogoff, B. (2003). The cultural nature of human development. Oxford: Oxford University Press.Google Scholar
  30. Runco, M., & Richards, R. (1997). Eminent and everyday creativity. London: Ablex.Google Scholar
  31. Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.Google Scholar
  32. Sternberg, R. J., & Lubart, T. I. (2000). The concept of creativity: Prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 3–15). Cambridge, UK: Cambridge University Press.Google Scholar
  33. Super, C. M., & Harkness, S. (1986). The developmental niche: A conceptualization at the interface of child and culture. International Journal of Behavioural Development, 9, 545–569.CrossRefGoogle Scholar
  34. Torrance, E. P. (1974). Torrance tests of creative thinking. Bensenville, IL: Scholastic Testing Service.Google Scholar
  35. Toulmin, S. E. (1969). The uses of argument. Cambridge, UK: Cambridge University Press.Google Scholar
  36. Van Oers, B. (2002). The mathematization of young children’s language. In K. Gravenmeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 29–58). Dordrecht: Kluwer.CrossRefGoogle Scholar
  37. Vogel, R. (2013). Mathematical situations of play and exploration. Educational Studies in Mathematics, 84(2), 209–226. doi: 10.1007/s10649-013-9504-4.CrossRefGoogle Scholar
  38. Vygotsky, L. (2004). Imagination and creativity in childhood. Journal of Russian and East European Psychology, 42(1), 7–97.Google Scholar
  39. Winnicott, D. W. (2012). Playing and reality. Retrieved from http://www.eblib.com. Accessed 19 June 2015.
  40. Wittgenstein, L. (1977). Philosophische Untersuchungen [Philosophical investigations]. Frankfurt a.M.: Suhrkamp.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Frankfurt/IDeA CenterFrankfurtGermany

Personalised recommendations