Advertisement

Adaptability as a Developmental Aspect of Mathematical Thinking in the Early Years

  • Götz KrummheuerEmail author
  • Marcus Schütte
Chapter

Abstract

For the purpose of analyzing the longitudinal development of mathematical thinking, statuses of participation of a child are reconstructed and theoretically described in terms of the framework of the “Interactional Niche in the Development of Mathematical Thinking.” In this chapter, we deal with the concept of adaptability within this framework, which we consider as having a twofold characteristic. The interactive process of negotiation of meaning adapts more or less to the needs of the participating children, thus producing specific options of participation and conversely the children adapt more or less successfully to the then accomplished content-related requirements. We demonstrate our theoretical reflections by presenting two episodes of a case study of a child, whom we accompanied in her mathematical development over a period of about 3 years.

Keywords

Mathematical Thinking Mathematical Discourse Folk Psychology Child Dyad Formal Discourse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acar Bayraktar, E., Hümmer, A.-M., Huth, M., Münz, M., & Reimann, M. (2011). Forschungsmethodischer Rahmen der Projekte erStMaL und MaKreKi. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Education”. Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi (Bd. 1) (pp. 11–24). Münster: Waxmann.Google Scholar
  2. Bauersfeld, H. (1995). “Language games” in the mathematics classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 271–291). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  3. Bowlby, J. (1969). Attachment. Attachment and loss (Vol. 1). New York: Basic Books.Google Scholar
  4. Brandt, B. (2004). Kinder als Lernende. Partizipationsspielräume und -profile im Klassenzimmer. Frankfurt a.m. Main: Peter Lang.Google Scholar
  5. Bruner, J. (1983). Child’s talk. Learning to use language. Oxford: Oxford University Press.Google Scholar
  6. Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.Google Scholar
  7. Chen, J. -Q., & McCray, J. (2014): Intentional teaching. Integrating the processes of instruction and construction to promote quality early mathematics education. In U. Kortenkamp, B. Brandt, C. Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 257–274). New York: Springer.Google Scholar
  8. Höck, B. (2015). Ko-konstruktive Problemlöseprozesse im Mathematikunterricht der Grundschule. Eine mikrosoziologische Studie zum Zusammenspiel lernpartnerschaftlicher Ko-Konstruktion und individueller Partizipation. Münster: Waxmann.Google Scholar
  9. Krummheuer, G. (1999). The narrative character of argumentative mathematics classroom interaction in primary education. Paper presented at the European research in mathematics education I, Osnabrück, Germany. http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/cerme1proceedings.html.
  10. Krummheuer, G. (2000). Studies of argumentation in primary mathematics education. Zentralblatt für Didaktik der Mathematik, 32(5), 155–161.CrossRefGoogle Scholar
  11. Krummheuer, G. (2009). Inscription, narration and diagrammatically based argumentation. The narrative accounting practices in the primary school mathematics lesson. In W.-M. Roth (Ed.), Mathematical representation at the interface of the body and culture (pp. 219–243). Charlotte, NC: Information Age.Google Scholar
  12. Krummheuer, G. (2011a). Die empirisch begründete Herleitung des Begriffs der “Interaktionalen Nische mathematischer Denkentwicklung” (NMD). In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Education”. Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi (Bd. 1) (pp. 25–90). Münster: Waxmann.Google Scholar
  13. Krummheuer, G. (2011b). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (ZDM), 43(1/2), 81–90.CrossRefGoogle Scholar
  14. Krummheuer, G. (2012). The “non-canonical” Solution and the “Improvisation” as Conditions for early Years Mathematics Learning Processes: The Concept of the “interactional Niche in the Development of mathematical Thinking” (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338.CrossRefGoogle Scholar
  15. Krummheuer, G. (2013a). The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educational Studies in Mathematics, 84(2), 249–265. doi: 10.1007/s10649-10013-19471-10649.CrossRefGoogle Scholar
  16. Krummheuer, G. (2013b). Research on mathematics learning at the “Center of Individual Development and Adaptive Education” (IDeA)—An introduction. Educational Studies in Mathematics, 84(2), 177–181. doi: 10.1007/s10649-10013-19502-10646.CrossRefGoogle Scholar
  17. Krummheuer, G. (2014a). The relationship between cultural expectation and the local realization of a mathematics learning environment. In U. Kortenkamp, B. Brandt, C. Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 71–84). New York: Springer.Google Scholar
  18. Krummheuer, G. (2014b). Interactionist and ethnomethodological approaches in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 313–316). Dodrecht: Springer.Google Scholar
  19. Krummheuer, G., Leuzinger-Bohleber, M., Müller-Kirchof, M., Münz, M., & Vogel, R. (2013). Explaining the mathematical creativity of a young boy: An interdisciplinary venture between mathematics education and psychoanalysis. Educational Studies in Mathematics, 84(2), 183–199. doi: 10.1007/s10649-013-9505-3.CrossRefGoogle Scholar
  20. Lave, W., & Wenger, E. (1991). Situated learning. Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Presmeg, N. (2014). The dance of instruction with construction in mathematics education. In U. Kortenkamp, B. Brandt, C. Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 9–17). New York: Springer.Google Scholar
  22. Sacks, H. (1998). Lectures on conversation. Malden, MA: Blackwell. 3. Auflage.Google Scholar
  23. Schütte, M., & Krummheuer, G. (2013). Changing mathematical content-related domains—A genuine mathematical action? In A. M. Lindmeyer & A. Heinze (Eds.), Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education - Mathematics learning across the life span (Vol. 4, pp. 185–192). Kiel: Institut für die Pädagogik der Naturwissenschaften (IPN).Google Scholar
  24. Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Super, C. M., & Harkness, S. (1986). The developmental niche: A conceptualization at the interface of child and culture. International Journal of Behavioral Development, 9, 545–569.CrossRefGoogle Scholar
  26. Vogel, R. (2013). Mathematical situations of play and exploration. Educational Studies in Mathematics, 84(2), 209–225.CrossRefGoogle Scholar
  27. Vogel, R. (2014). Mathematical situations of play and exploration as an empirical research instrument. In U. Kortenkamp, C. Benz, B. Brandt, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning—Selected papers of the POEM 2012 conference (pp. 223–236). New York: Springer.Google Scholar
  28. Vogel, R., & Huth, M. (2010). “…und der Elephant in die Mitte” - Rekonstruktion mathematischer Konzepte von Kindern in Gesprächssituationen. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik. Götz Krummheuer zum 60. Geburtstag (pp. 177–207). Münster: Waxmann.Google Scholar
  29. Webster, N. (1983). Webster's new twentieth century dictionary. Unabridged (2nd ed.). In J. L. McKechnie (Ed.). New York: Simon and Shuster.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Goethe UniversityFrankfurt am MainGermany
  2. 2.Technical University DresdenDresdenGermany

Personalised recommendations