Skip to main content

Dynamic Simulation of Progressive Crank Train

  • Conference paper
  • First Online:
Advanced Mechatronics Solutions

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 393))

Abstract

This paper presents computational approaches for verification of conceptual study of low-friction-losses crank train design and its vibration analysis. The decrease of friction losses is realized by reduction of crankshaft main bearings number while the influence of a crankshaft pulley torsional vibration and main bearings load are investigated. The computational model is assembled as well as numerically solved in a Multi-Body System whereas the modally reduced bodies are incorporated into it and hydrodynamic problem is also taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novotný P. Virtual Engine – A Tool for Powertrain Development, Inaugural Dissertation, Brno University of Technology, Czech Republic, 2009

    Google Scholar 

  2. Novotný P., Píštěk V.. New Efficient Methods for Powertrain Vibration Analysis, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2010, pp. 611–629. ISSN 0954-4070

    Google Scholar 

  3. Butenschön H. J. Das hydrodynamische, zylindrische Gleitlager endlicher Breite unter instationärer Belastung. PhD dissertation, Universität Karlsruhe, Germany, 1976

    Google Scholar 

  4. Rebbert M. Simulation der Kurbewellendynamik unter Berücksichtigung der hydrodynamischen Lagerung zur Lösung motorakusticher Fragen. Ph.D. dissertation, Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany, 2003

    Google Scholar 

  5. Roelands C. J. A. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils. Ph.D. Thesis. Delf: Technical University Delft, The Netherlands, 1966

    Google Scholar 

  6. Craig R. R. Structural Dynamics. John Willey & Sons, 1981. ISBN 0-471-04499-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomír Drápal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Drápal, L., Novotný, P., Píštěk, V. (2016). Dynamic Simulation of Progressive Crank Train. In: Jabłoński, R., Brezina, T. (eds) Advanced Mechatronics Solutions. Advances in Intelligent Systems and Computing, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-319-23923-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23923-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23921-7

  • Online ISBN: 978-3-319-23923-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics