Skip to main content

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

  • 1925 Accesses

Abstract

Assembly, growth and secretion of MFG takes place in the milk-secreting cells of the mammary gland of mammals. In the original state, tiny intracellular lipid droplets (<0.5 μm) are formed at the endoplasmic reticulum membranes, which is the site of origin of TAGs. These discrete small droplets have a TAG core coated by a single layer of polar lipids and proteins. They migrate from the endoplasmic reticulum to the cytosol, fuse together and form bigger droplets (Heid and Keenan 2005; Deeney et al. 1985). The formation of these cytoplasmic lipid droplets by droplet-droplet fusion is assumed to be governed by calcium and protein complexes originating from the cytosol and fusion-promoting agents, gangliosides (Valivullah et al. 1988). However, the coalescence of cytoplasmic lipid droplets to form larger droplets is not facilitated. It is assumed that the regulation of droplet size might be associated with the difference in composition of surface coat between the micro-lipid and cytoplasmic lipid droplets (Deeney et al. 1985). The lipid droplets are then transported to the apical plasma membrane in which they are discharged from the epithelial cell and secreted. At this point the lipid droplets are progressively coated by the plasma membrane to form the outer bilayer milk fat globule membrane (MFGM), rendering the final trilayer structure of intact MFGM upon secretion (Heid and Keenan 2005) (Fig. 2.1). With its dense protein coat (10–50 nm thick) and complex molecular organization, the MFGM is considered to be a true biological membrane (Keenan and Mather 2006) (Fig. 2.1). The MFGM is enriched in polar lipids and also possesses size-related biochemical and structural differences (Lopez 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Deeney JT, Valivullah HM, Dapper CH, Dylewski DP, Keenan TW. Microlipid droplets in milk secreting mammary epithelial-cells – evidence that they originate from endoplasmic-reticulum and are precursors of milk lipid globules. Eur J Cell Biol. 1985;38(1):16–26.

    CAS  Google Scholar 

  • Gresti J, Bugaut M, Maniongui C, Bezard J. Composition of molecular-species of triacylglycerols in bovine-milk fat. J Dairy Sci. 1993;76(7):1850–69.

    Article  CAS  Google Scholar 

  • Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005;84(2–3):245–58. doi:10.1016/j.ejcb.2004.12.002.

    Article  CAS  Google Scholar 

  • Huppertz T, Kelly AL. Physical chemistry of milk fat globules. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry volume 2: lipids, vol. 2. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  • Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 2002;85(2):295–350.

    Article  CAS  Google Scholar 

  • Kaylegian KE, Lindsay RC. Handbook of milkfat fractionation technology and applications. Champaign: AOCS; 1995.

    Google Scholar 

  • Keenan TW, Mather IH. Intracellular origin of milk fat globules. In: Fox PF, McSweeney PL, editors. Advanced dairy chemistry 2: lipids, vol. 2. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  • Lopez C. Focus on the supramolecular structure of milk fat in dairy products. Reprod Nutr Dev. 2005;45(4):497–511. doi:10.1051/Rnd:2005034.

    Article  CAS  Google Scholar 

  • Lopez C. Milk fat globules enveloped by their biological membrane: unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci. 2011;16(5):391–404. doi:10.1016/j.cocis.2011.05.007.

    Article  CAS  Google Scholar 

  • Lopez C, Briard-Bion V, Menard O, Rousseau F, Pradel P, Besle JM. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J Agric Food Chem. 2008;56(13):5226–36. doi:10.1021/Jf7036104.

    Article  CAS  Google Scholar 

  • Lopez C, Briard-Bion V, Menard O, Beaucher E, Rousseau F, Fauquant J, Leconte N, Robert B. Fat globules selected from whole milk according to their size: different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011;125(2):355–68. doi:10.1016/j.foodchem.2010.09.005.

    Article  CAS  Google Scholar 

  • MacGibbon AKH, Taylor MW. Composition and structure of bovine milk lipids. In: Fox PF, McSweeney PL, editors. Advanced dairy chemistry 2: lipids, vol. 2. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  • Michalski MC, Briard V, Michel F. Optical parameters of milk fat globules for laser light scattering measurements. Lait. 2001a;81(6):787–96.

    Article  CAS  Google Scholar 

  • Michalski MC, Michel F, Sainmont D, Briard V. Apparent zeta-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids Surf B Biointerfaces. 2001b;23:23–30.

    Article  Google Scholar 

  • Scow RO, Blanchettemackie EJ, Smith LC. Transport of lipid across capillary endothelium. Fed Proc. 1980;39(9):2610–7.

    CAS  Google Scholar 

  • Timmen H, Patton S. Milk-fat globules - fatty-acid composition, size and in vivo regulation of fat liquidity. Lipids. 1988;23(7):685–9. doi:10.1007/Bf02535669.

    Article  CAS  Google Scholar 

  • Valivullah HM, Bevan DR, Peat A, Keenan TW. Milk lipid globules - control of their size distribution. Proc Natl Acad Sci U S A. 1988;85(23):8775–9. doi:10.1073/pnas.85.23.8775.

    Article  CAS  Google Scholar 

  • Walstra P, Oortwijn H. Estimating Globule-Size Distribution of Oil-in-Water Emulsions by Coulter Counter. J Colloid Interf Sci. 1969;29(3):424–31.

    Google Scholar 

  • Walstra P. Physical chemistry of milk fat globules. In: Fox PF, editor. Advanced dairy chemistry vol. 2: lipids. London: Chapman & Hall; 1995. p. 131–78.

    Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellama A, Van Boekel MAJS. Dairy technology: principles of milk properties and processes. New York: Marcel Dekker; 1999.

    Google Scholar 

  • Waninge R, Kalda E, Paulsson M, Nylander T, Bergenstahl B. Cryo-TEM of isolated milk fat globule membrane structures in cream. Phys Chem Chem Phys. 2004;6(7):1518–23. doi:10.1039/B314613h.

    Article  CAS  Google Scholar 

  • Wright AJ, Marangoni AG. The effect of minor components on milkfat crystallization, microstructure, and rheological properties. In: Marangoni AG, Narine SS, editors. Physical properties of lipids. New York: Marcel Dekker; 2002. p. 589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Truong, T., Palmer, M., Bansal, N., Bhandari, B. (2016). An Overview of Milk Fat Globules. In: Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-23877-7_2

Download citation

Publish with us

Policies and ethics