Skip to main content

Materials Informatics Using Ab initio Data: Application to MAX Phases

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 225))

Abstract

We use a database constructed for a very unique class of laminated intermetallic compounds, the MAX \(\mathrm{(M}_\mathrm{n+1}\mathrm{AX}_\mathrm{n})\) phase, to show how materials informatics can be used to predict the existence of new, hitherto unexplored phases. The focus of this Chapter is the correlation between seemingly disconnected descriptors and the importance of high quality, computationally derived data. An extension of this approach to other specific materials systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Vapnik, The Nature of Statistical Learning Theory (Springer Science & Business Media, New York, 2000)

    Google Scholar 

  2. K. Rajan, Materials informatics. Mater. Today 8(10), 38–45 (2005)

    Article  Google Scholar 

  3. R.F. Service, Science materials scientists look to a data-intensive future. Science 335(6075), 1434–1435 (2012)

    Google Scholar 

  4. P. Jiang, X.S. Liu, Big data mining yields novel insights on cancer. Nat. Genet. 47(2), 103–104 (2015)

    Article  Google Scholar 

  5. P.V. Balachandran, S.R. Broderick, K. Rajan, Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467, 2271–2290 (2011)

    Google Scholar 

  6. M. Nishijima et al., Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat. Commun. 5 (2014)

    Google Scholar 

  7. J. Carrete et al., Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4(1), 011019 (2014)

    Google Scholar 

  8. Y. Saad et al., Data mining for materials: computational experiments with AB compounds. Phys. Rev. B 85(10), 104104 (2012)

    Article  Google Scholar 

  9. A.W. Bosse, E.K. Lin, Polymer physics and the materials genome initiative. J. Polym. Sci. Part B: Polym. Phys. 53(2), 89 (2015)

    Article  Google Scholar 

  10. S. Broderick et al., An informatics based analysis of the impact of isotope substitution on phonon modes in graphene. Appl. Phys. Lett. 104(24), 243110 (2014)

    Article  Google Scholar 

  11. S. Aryal et al., A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys. Status Solidi (b) 251(8), 1480–1497 (2014)

    Google Scholar 

  12. M.W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley, New York, 2013)

    Google Scholar 

  13. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Google Scholar 

  14. Y. Mo, P. Rulis, W.Y. Ching, Electronic structure and optical conductivities of 20 MAX-phase compounds. Phys. Rev. B 86(16), 165122 (2012)

    Article  Google Scholar 

  15. L. Wang, P. Rulis, W.Y. Ching, Calculation of core-level excitation in some MAX-phase compounds. J. Appl. Phys. 114, 023708 (2013)

    Article  Google Scholar 

  16. J. Hafner, J. Furthmüller, G. Kresse, Vienna Ab-initio Simulation Package (VASP) (1993), http://www.vasp.at/

  17. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1956)

    Google Scholar 

  18. W.Y. Ching, P. Rulis, Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals. (Oxford University Press, Oxford, 2012) p. 360

    Google Scholar 

  19. R. Ahuja et al., Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. Phys. Rev. B 53(6), 3072–3079 (1996)

    Article  Google Scholar 

  20. S.R. Nagel, J. Tauc, Nearly-free-electron approach to the theory of metallic glass alloys. Phys. Rev. Lett. 35(6), 380–383 (1975)

    Article  Google Scholar 

  21. M.W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrideds (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  22. M. Hall et al., The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  23. C. Dhakal, R. Sakidja, S. Aryal, W.Y. Ching, Calculation of lattice thermal conductivity of MAX phases. J. Eur. Ceram. Soc. 35(12), 3203–3212 (2015)

    Google Scholar 

  24. D.T. Morelli, G.A. Slack, High lattice thermal conductivity solids, High Thermal Conductivity Materials (Springer, Berlin, 2006), pp. 37–68

    Chapter  Google Scholar 

  25. C.L. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev. 137(1A), A128 (1965)

    Article  Google Scholar 

  26. D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67–74 (2003)

    Article  Google Scholar 

  27. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008)

    Article  Google Scholar 

  28. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago press, Chicago, 1948)

    Google Scholar 

  29. W. Voigt, Lehrbuch Der Kristallphysik (mit Ausschluss Der Kristalloptik). 1928: B.G. Teubner

    Google Scholar 

  30. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    Google Scholar 

  31. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  Google Scholar 

  32. C.C. Dharamawardhana, W.Y. Ching, Universal Elastic Anisotropy in MAX Phases (unpblished)

    Google Scholar 

  33. M.R. Lukatskaya et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013)

    Article  Google Scholar 

  34. M. Naguib et al., 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)

    Article  Google Scholar 

  35. S. Aryal, R. Sakidja, L. Ouyang, W.-Y. Ching, Elastic and electronic properties of \({\rm {Ti}}_{2}{\rm {Al(C}}_{1-{\rm {x}}}{\rm {N}}_{\rm {x})}\) solid solutions. J. Eur. Ceram. Soc. 35(12), 3219–3227 (2015)

    Article  Google Scholar 

  36. Y. Mo, S. Aryal, P. Rulis, W.Y. Ching, Crystal structure and elastic properties of hypothesized MAX phase-like compound (Cr2Hf)2Al3C3. J. Am. Ceram. Soc. 97(8), 2646–2653 (2014)

    Article  Google Scholar 

  37. C.C. Dharmawardhana, A. Misra, W.Y. Ching, Quantum mechanical metric for internal cohesion in cement crystals. Sci. Rep. 4, 7332 (2014)

    Article  Google Scholar 

  38. H. Strunz, Mineralogische Tabellen (Akad Verl.-Ges. Geest u Portig, Leipzig, 1982)

    Google Scholar 

  39. C.C. Dharmawardhana et al., Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals. Cem. Concr. Res. 52, 123–130 (2013)

    Article  Google Scholar 

  40. I.G. Richardson, The calcium silicate hydrates. Cem. Concr. Res. 38, 137–158 (2008)

    Article  Google Scholar 

  41. J. Schroers, Bulk metallic glasses. Phys. Today 66(2), 32–37 (2013)

    Article  Google Scholar 

  42. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  Google Scholar 

  43. A. Peker, W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Appl. Phys. Lett. 63(17), 2342–2344 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

I acknowledge with thanks the contributions and assistance from Drs. Sitaram Aryal, Yuxiang Mo and Liaoyuan Wang; Professors Michel W. Barsoum, Ridwan Sakidja, and Paul Rulis; Mr. Chamila C. Dharmawardhana, and Mr. Chandra Dhakal. This work was supported by the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE) under Grant No. DE-FE0005865. This research used the resources of the National Energy Research Scientific Computing Center (NERSC) supported by the Office of Basic Science of DOE under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai-Yim Ching .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ching, WY. (2016). Materials Informatics Using Ab initio Data: Application to MAX Phases. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_10

Download citation

Publish with us

Policies and ethics