Skip to main content

A Perspective on Materials Informatics: State-of-the-Art and Challenges

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Abstract

We review how classification and regression methods have been used on materials problems and outline a design loop that serves as a basis for adaptively finding materials with targeted properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Materials Genome Initiative for Global Competitiveness (2011)

    Google Scholar 

  2. S.R. Kalidindi, M. De Graef, Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45(1), 171–193 (2015)

    Article  Google Scholar 

  3. T.D. Wall, J.M. Corbett, C.W. Clegg, P.R. Jackson, R. Martin, Advanced manufacturing technology and work design: towards a theoretical framework. J. Organ. Behav. 11(3), 201–219 (1990)

    Article  Google Scholar 

  4. E. Mooser, W.B. Pearson, On the crystal chemistry of normal valence compounds. Acta Crystallogr. 12, 1015–1022 (1959)

    Article  Google Scholar 

  5. J.R. Chelikowsky, J.C. Phillips, Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Phys. Rev. B 17, 2453–2477 (1978)

    Article  Google Scholar 

  6. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015)

    Article  Google Scholar 

  7. Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J.R. Chelikowsky, W. Andreoni, Data mining for materials: computational experiments with \(AB\) compounds. Phys. Rev. B 85, 104104 (2012)

    Article  Google Scholar 

  8. G. Pilania, J.E. Gubernatis, T. Lookman, Structure classification and melting temperature prediction of octet AB solids via machine learning. Phys. Rev. B 91, 124301 (2015)

    Article  Google Scholar 

  9. G. Pilania, P.V. Balachandran, J.E. Gubernatis, T. Lookman, Predicting the formability of ABO3 perovskite solids: a machine learning study. Acta Crystallogr. B 71, 507–513 (2015)

    Google Scholar 

  10. S.M. Senkan, High-throughput screening of solid-state catalyst libraries. Nature 394 (6691), 350–353, 07 (1998)

    Google Scholar 

  11. H. Koinuma, I. Takeuchi, Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004)

    Article  Google Scholar 

  12. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer, New York, 2008)

    Google Scholar 

  13. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1) (2013)

    Google Scholar 

  14. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, AFLOWLIB.ORG: a distributed materials property repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012)

    Article  Google Scholar 

  15. A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Machine learning with systematic density-functional theory calculations: application to melting temperatures of single-and binary-component solids. Phys. Rev. B 89, 054303 (2014)

    Google Scholar 

  16. P.V. Balachandran, S.R. Broderick, K. Rajan, Identifying the inorganic gene for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467(2132), 2271–2290 (2011)

    Article  Google Scholar 

  17. R. Armiento, B. Kozinsky, M. Fornari, G. Ceder, Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys. Rev. B 84, 014103 (2011)

    Article  Google Scholar 

  18. W. Hu, Experimental search for high Curie temperature piezoelectric ceramics with combinatorial approaches. Ph.D. dissertation, Iowa State University (2011)

    Google Scholar 

  19. L.A. Dalton, E.R. Dougherty, Optimal classifiers with minimum expected error within a Bayesian framework–Part I: discrete and Gaussian models. Pattern Recognit. 46(5), 1301–1314 (2013)

    Article  Google Scholar 

  20. L.A. Dalton, E.R. Dougherty, Optimal classifiers with minimum expected error within a Bayesian framework—Part II: properties and performance analysis. Pattern Recognit. 46(5), 1288–1300 (2013)

    Article  Google Scholar 

  21. K.E. Lee, N. Sha, E.R. Dougherty, M. Vannucci, B.K. Mallick, Gene selection: a Bayesian variable selection approach. Bioinformatics 19(1), 90–97 (2003)

    Article  Google Scholar 

  22. E.R. Dougherty, A. Zollanvari, U.M. Braga-Neto, The illusion of distribution-free small-sample classification in genomics. Curr genomics 12(5), 333–341 (2011)

    Article  Google Scholar 

  23. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  Google Scholar 

  24. W. Powell, I. Ryzhov, Optimal Learning, Wiley Series in Probability and Statistics (Wiley, Hoboken, 2013)

    Google Scholar 

  25. P.V. Balachandran, J. Theiler, J. M. Rondinelli, T. Lookman, Materials Prediction via Classification Learning Sci. Rep. 5, 13285 (2015)

    Google Scholar 

  26. M.F. Cover, O. Warschkow, M.M.M. Bilek, D.R. McKenzie, A comprehensive survey of M\(_2\)AX phase elastic properties. J. Phys.: Condens. Matter 21(30), 305403 (2009)

    Google Scholar 

  27. M.W. Barsoum, M. Radovic, Elastic and mechanical properties of the MAX phases. Ann. Rev. Mater. Res. 41, 195–227 (2011)

    Article  Google Scholar 

  28. J.T. Waber, D.T. Cromer, Orbital radii of atoms and ions. J. Chem. Phys. 42(12), 4116–4123 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from a Laboratory Directed Research and Development (LDRD) DR (#20140013DR) at the Los Alamos National Laboratory (LANL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lookman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lookman, T. et al. (2016). A Perspective on Materials Informatics: State-of-the-Art and Challenges. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_1

Download citation

Publish with us

Policies and ethics