Skip to main content

MEMS Nanopositioners

  • Chapter
Nanopositioning Technologies

Abstract

Nanopositioning mechanisms, or nanopositioners, have evolved quickly over the last few decades due to a growing need for nanoscale precision motion control in applications including microscopy, lithography, nanomanufacturing, and optics. The critical differentiator between nanopositioners and other motion stages is that nanopositioners are capable of nanoscale positioning resolution, which is generally interpreted as a few nanometers and below. Motion stages with mechanical elements that have friction, such as screws, linear bearing slides, and rotational bearings, are not capable of nanoscale resolution. The backlash caused by friction limits the precision in these mechanisms to tens of nanometers, and complex control systems are often required to reach this level. As a result, nanopositioner designs typically use a flexure mechanism to guide the motion of the stage, which exhibit no friction since the motion is based on structural bending, thereby providing continuous smooth movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Ryu, D.-G. Gweon, K.S. Moon, Optimal design of a flexure hinge based XYφ wafer stage. Precis. Eng. 21, 18–28 (1997)

    Article  Google Scholar 

  2. P. Gao, S.-M. Swei, Z. Yuan, A new piezodriven precision micropositioning stage utilizing flexure hinges. Nanotechnology 10, 394–398 (1999)

    Article  Google Scholar 

  3. A. Elmustafa, M.G. Lagally, Flexural-hinge guided motion nanopositioner stage for precision machining: finite element simulations. Precis. Eng. 25, 77–81 (2001)

    Article  Google Scholar 

  4. http://www.physikinstrumente.com

  5. http://www.npoint.com

  6. http://www.aerotech.com

  7. S. Salapaka, A. Sebastian, J.P. Cleveland, M.V. Salapaka, High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73, 3232–3241 (2002)

    Article  Google Scholar 

  8. C.-W. Lee, S.-W. Kim, An ultraprecision stage for alignment of wafers in advanced microlithography. Precis. Eng. 21, 113–122 (1997)

    Article  MATH  Google Scholar 

  9. S. Akamine, T.R. Albrecht, M.J. Zdeblick, C.F. Quate, Microfabricated scanning tunneling microscope. IEEE Electron Device Lett. 10, 490–492 (1989)

    Article  Google Scholar 

  10. E. Meyer, H.J. Hug, R. Bennwitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, New York, 2004)

    Book  Google Scholar 

  11. J.J. Yao, S.C. Arney, N.C. MacDonald, Fabrication of high frequency two-dimensional nanoactuators for scanned probe devices. J. Microelectromech. Syst. 1, 14–22 (1992)

    Article  Google Scholar 

  12. Y. Xu, N.C. MacDonald, S.A. Miller, Integrated micro‐scanning tunneling microscope. Appl. Phys. Lett. 67, 2305–2307 (1995)

    Article  Google Scholar 

  13. S.A. Miller, K.L. Turner, N.C. MacDonald, Microelectromechanical scanning probe instruments for array architectures. Rev. Sci. Instrum. 68, 4155–4162 (1997)

    Article  Google Scholar 

  14. S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, C.F. Quate, Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998)

    Article  Google Scholar 

  15. S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate, Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett. 72, 2340–2342 (1998)

    Google Scholar 

  16. D. Lange, T. Akiyama, C. Hagleitner, A. Tonin, H.R. Hidber, P. Niedermann, U. Staufer, N.F. de Rooij, O. Brand, H. Baltes, Parallel scanning AFM with on-chip circuitry in CMOS technology, in Proceedings of IEEE MEMS (IEEE, New York, 1999), pp. 447–452

    Google Scholar 

  17. T. Volden, M. Zimmermann, D. Lange, O. Brand, H. Baltes, Dynamics of CMOS-based thermally actuated cantilever arrays for force microscopy. Sensors Actuators A 115, 516–522 (2004)

    Article  Google Scholar 

  18. S. Hafizovic, D. Barrettino, T. Volden, J. Sedivy, K.U. Kirstein, O. Brand, A. Hierlemann, Single chip mechatronic microsystem for surface imaging and force response studies. Proc. Natl. Acad. Sci. 101, 17011–17015 (2004)

    Article  Google Scholar 

  19. A.G. Fowler, A.N. Laskovski, A.C. Hammond, S.O.R. Moheimani, A 2-DOF electrostatically actuated MEMS nanopositioner for on-chip AFM. J. Microelectromech. Syst. 21, 771–773 (2012)

    Article  Google Scholar 

  20. A. Mohammadi, A.G. Fowler, Y.K. Yong, S.O.R. Moheimani, A feedback controlled MEMS nanopositioner for on-chip high-speed AFM. J. Microelectromech. Syst. 23, 610–619 (2014)

    Article  Google Scholar 

  21. M. Maroufi, A. Bazaei, S.O.R. Moheimani, A high-bandwidth MEMS nanopositioner for on-chip AFM: design, characterization, and control. IEEE Trans. Control Syst. Technol. 23, 504–512 (2015)

    Article  Google Scholar 

  22. M. Maroufi, A.G. Fowler, A. Bazaei, S.O.R. Moheimani, High-stroke silicon-on-insulator MEMS nanopositioner: control design for non-raster scan atomic force microscopy. Rev. Sci. Instrum. 86, 023705 (2015)

    Article  Google Scholar 

  23. N. Sarkar, G. Lee, R.R. Mansour, CMOS-MEMS dynamic FM atomic force microscope, in Proceedings of Transducers (IEEE, New York, 2013), pp. 916–919

    Google Scholar 

  24. N. Sarkar, D. Strathearn, G. Lee, M. Olfat, R.R. Mansour, A 0.25 mm3 atomic force microscope on-a-chip, in Proceedings of IEEE MEMS (IEEE, New York, 2015), pp. 732–735

    Google Scholar 

  25. E. Eleftheriou et~al., Millipede – a MEMS-based scanning-probe data-storage system. IEEE Trans. Magn. 39, 938–945 (2003)

    Google Scholar 

  26. Y. Ahn, T. Ono, M. Esahi, Si multiprobes integrated with lateral actuators for independent scanning probe applications. J. Micromech. Microeng. 15, 1224–1229 (2005)

    Article  Google Scholar 

  27. N. Sarkar, C. Baur, E. Stach, Z. Jandric, R. Stallcup, M. Ellis et~al., Modular MEMS experimental platform for transmission electron microscopy, in Proceedings of IEEE MEMS (IEEE, New York, 2006), pp. 146–149

    Google Scholar 

  28. J.J. Gorman, Y.-S. Kim, A.E. Vladar, N.G. Dagalakis, Design of an on-chip microscale nanoassembly system. Int. J. Nanomanuf. 1, 710–721 (2007)

    Article  Google Scholar 

  29. X. Liu, J. Tong, Y. Sun, A millimeter-sized nanomanipulator with sub-nanometer positioning resolution and large force output. Smart Mater. Struct. 16, 1742–1750 (2007)

    Article  Google Scholar 

  30. S. Lu, D.A. Dikin, S. Zhang, F.T. Fisher, J. Lee, R.S. Ruoff, Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev. Sci. Instrum. 75, 2154–2162 (2004)

    Article  Google Scholar 

  31. Y. Zhu, H.D. Espinosa, An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. 102, 14503–14508 (2005)

    Article  Google Scholar 

  32. B. Pant, B.L. Allen, T. Zhu, K. Gall, O.N. Pierron, A versatile microelectromechanical system for nanomechanical testing. Appl. Phys. Lett. 98, 053506 (2011)

    Article  Google Scholar 

  33. S.T. Smith, D.G. Chetwynd, Foundations of Ultra-Precision Mechanism Design (CRC Press, Boca Raton, 1992)

    Google Scholar 

  34. S.T. Smith, Flexures: Elements of Elastic Mechanisms (Taylor & Francis, London, 2000)

    Google Scholar 

  35. R. Legtenberg, A.W. Groeneveld, M. Elwenspoek, Comb-drive actuators for large displacements. J. Micromech. Microeng. 6, 320–329 (1996)

    Article  Google Scholar 

  36. V.P. Jaecklin, C. Linder, N.F. de Rooij, J.M. Moret, R. Bischof, F. Rudolf, Novel polysilicon comb actuators for XY-stages, in Proceedings of IEEE MEMS (IEEE, New York, 1992), pp. 147–149

    Google Scholar 

  37. D. Kobayashi, T. Hirano, T. Furuhata, H. Fujita, An integrated lateral tunneling unit, in Proceedings of IEEE MEMS (IEEE, New York, 1992), pp. 214–219

    Google Scholar 

  38. M.I. Lutwyche, Y. Wada, Manufacture of micromechanical scanning tunnelling microscopes for observation of the tip apex in a transmission electron microscope. Sensors Actuators A 48, 127–136 (1995)

    Article  Google Scholar 

  39. C.S.B. Lee, S. Han, N.C. MacDonald, Single crystal silicon (SCS) XY-stage fabricated by DRIE and IR alignment, in Proceedings of IEEE MEMS (IEEE, New York, 2000), pp. 28–33

    Google Scholar 

  40. C.-H. Kim, Y.-K. Kim, Micro XY-stage using silicon on a glass substrate. J. Micromech. Microeng. 12, 103–107 (2002)

    Google Scholar 

  41. J. Dong, D. Mukhopadhyay, P.M. Ferreira, Design, fabrication and testing of a silicon-on-insulator (SOI) MEMS parallel kinematics XY stage. J. Micromech. Microeng. 17, 1154–1161 (2007)

    Article  Google Scholar 

  42. Y.-S. Kim, J.-M. Yoo, S.H. Yang, Y.-M. Choi, N.G. Dagalakis, S.K. Gupta, Design, fabrication and testing of a serial kinematic MEMS XY stage for multifinger manipulation. J. Micromech. Microeng. 22, 085029 (2012)

    Article  Google Scholar 

  43. X. Liu, K. Kim, Y. Sun, A MEMS stage for 3-axis nanopositioning. J. Micromech. Microeng. 17, 1796–1802 (2007)

    Article  Google Scholar 

  44. J. Dong, P.M. Ferreira, Electrostatically actuated cantilever with SOI-MEMS parallel kinematic XY stage. J. Microelectromech. Syst. 18, 641–651 (2009)

    Article  Google Scholar 

  45. Y.S. Kim, N.G. Dagalakis, S.K. Gupta, Design of MEMS based three-axis motion stage by incorporating a nested structure. J. Micromech. Microeng. 24, 075009 (2014)

    Article  Google Scholar 

  46. D. Mukhopadhyay, J. Dong, E. Pengwang, P. Ferreira, A SOI-MEMS-based 3-DOF planar parallel-kinematics nanopositioning stage. Sens. Actuators A 147, 340–351 (2008)

    Article  Google Scholar 

  47. S.-C. Chen, M.L. Culpepper, Design of a six-axis micro-scale nanopositioner—μHexFlex. Precis. Eng. 30, 314–324 (2006)

    Article  Google Scholar 

  48. S.D. Senturia, Microsystem Design (Springer, New York, 2001)

    Google Scholar 

  49. C. Liu, Foundations of MEMS (Prentice Hall, Upper Saddle River, 2011)

    Google Scholar 

  50. D.J. Bell, T.J. Lu, N.A. Fleck, S.M. Spearing, MEMS actuators and sensors: observations on their performance and selection for purpose. J. Micromech. Microeng. 15, S153–S164 (2005)

    Google Scholar 

  51. N.B. Hubbard, M.L. Culpepper, L.L. Howell, Actuators for micropositioners and nanopositioners. Appl. Mech. Rev. 59, 324–334 (2006)

    Article  Google Scholar 

  52. R.C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)

    Article  Google Scholar 

  53. Y.-M. Choi, J.J. Gorman, N.G. Dagalakis, S.H. Yang, Y.-S. Kim, J.-M. Yoo, A high-bandwidth electromagnetic MEMS motion stage for scanning applications. J. Micromech. Microeng. 22, 105012 (2012)

    Article  Google Scholar 

  54. J.D. Grade, H. Jerman, T.W. Kenny, Design of large deflection electrostatic actuators. J. Microelectromech. Syst. 12, 335–343 (2003)

    Article  Google Scholar 

  55. M. Olfatnia, S. Sood, J.J. Gorman, S. Awtar, Large stroke electrostatic comb-drive actuators enabled by a novel flexure mechanism. J. Microelectromech. Syst. 22, 483–494 (2013)

    Article  Google Scholar 

  56. T. Akiyama, U. Staufer, N.F. de Rooij, Atomic force microscopy using an integrated comb-shape electrostatic actuator for high-speed feedback motion. Appl. Phys. Lett. 76, 3139–3141 (2000)

    Article  Google Scholar 

  57. J.L.A. Yeh, C.-Y. Hui, N.C. Tien, Electrostatic model for an asymmetric combdrive. J. Microelectromech. Syst. 9, 126–135 (2000)

    Article  Google Scholar 

  58. M.S.C. Lu, G.K. Fedder, Position control of parallel-plate microactuators for probe-based data storage. J. Microelectromech. Syst. 13, 759–769 (2004)

    Article  Google Scholar 

  59. A.G. Onaran, M. Balantekin, W. Lee, W.L. Hughes, B.A. Buchine, R.O. Guldiken et~al., Anew atomic force microscope probe with force sensing integrated readout and active tip. Rev. Sci. Instrum. 77, 023501 (2006)

    Google Scholar 

  60. E.C.M. Disseldorp, F.C. Tabak, A.J. Katan, M.B.S. Hesselberth, T.H. Oosterkamp, J.W.M. Frenken et~al., MEMS-based high speed scanning probe microscopy. Rev. Sci. Instrum. 81, 043702 (2010)

    Google Scholar 

  61. F.C. Tabak, E.C.M. Disseldorp, G.H. Wortel, A.J. Katan, M.B.S. Hesselberth, T.H. Oosterkamp et~al., MEMS-based fast scanning probe microscopes. Ultramicroscopy 110, 599–604 (2010)

    Google Scholar 

  62. E.S. Hung, S.D. Senturia, Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8(4), 497–505 (1999)

    Article  Google Scholar 

  63. D.A. Horsley, N. Wongkomet, R. Horowitz, A.P. Pisano, Precision positioning using a microfabricated electrostatic actuator. IEEE Trans. Magn. 35, 993–999 (1999)

    Article  Google Scholar 

  64. Y. Sun, D. Piyabongkarn, A. Sezen, B.J. Nelson, R. Rajamani, A high-aspect-ratio two-axis electrostatic microactuator with extended travel range. Sens. Actuators A 102, 49–60 (2002)

    Article  Google Scholar 

  65. R. Cragun, L.L. Howell, Linear thermomechanical microactuators, in Proceedings of ASME IMECE (ASME, New York, 1999), pp. 181–188

    Google Scholar 

  66. L.L. Chu, Y.B. Gianchandani, A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing. J. Micromech. Microeng. 13, 279–285 (2003)

    Google Scholar 

  67. N.B. Hubbard, L.L. Howell, Design and characterization of a dual-stage, thermally actuated nanopositioner. J. Micromech. Microeng. 15, 1482–1493 (2005)

    Google Scholar 

  68. S. ergna, J.J. Gorman, N.G. Dagalakis, Design and modeling of thermally actuated MEMS nanopositioners, in Proceedings of ASME International Mechanical Engineering Congress and Exposition (ASME, New York, 2005), pp. 561–568

    Google Scholar 

  69. J.J. Gorman, Y.-S. Kim, N.G. Dagalakis, Control of MEMS nanopositioners with nano-scale resolution, in Proceedings of ASME International Mechanical Engineering Congress and Exposition (ASME, New York, 2006), pp. 151–159

    Google Scholar 

  70. R.K. Messenger, Q.T. Aten, T.W. McLain, L.L. Howell, Piezoresistive feedback control of a MEMS thermal actuator. J. Microelectromech. Syst. 18, 1267–1278 (2009)

    Article  Google Scholar 

  71. Y. Zhu, A. Bazaei, S.O.R. Moheimani, M.R. Yuce, Design, modeling, and control of a micromachined nanopositioner with integrated electrothermal actuation and sensing. J. Microelectromech. Syst. 20, 711–719 (2011)

    Article  Google Scholar 

  72. M. Rakotondrabe, A.G. Fowler, S.O.R. Moheimani, Control of a novel 2-DoF MEMS nanopositioner with electrothermal actuation and sensing. IEEE Trans. Control Syst. Technol. 22, 1486–1497 (2014)

    Article  Google Scholar 

  73. J.H. Comtois, V.M. Bright, M.W. Phipps, Thermal microactuators for surface-micromachining processes, in Proceedings of SPIE 2642, Micromachined Devices and Components (SPIE, Bellingham, 1995), pp. 10–21

    Google Scholar 

  74. D. Yan, A. Khajepour, R. Mansour, Design and modeling of a MEMS bidirectional vertical thermal actuator. J. Micromech. Microeng. 14, 841–850 (2004)

    Article  Google Scholar 

  75. T. Akiyama, U. Staufer, N.F. de Rooij, Fast driving technique for integrated thermal bimorph actuator toward high-throughput atomic-force microscopy. Rev. Sci. Instrum. 73, 2643–2646 (2002)

    Article  Google Scholar 

  76. G. Vitellaro, G. L’Episcopo, C. Trigona, B. Ando, S. Baglio, A compliant MEMS device for out-of-plane displacements with thermo-electric actuation. J. Microelectromech. Syst. 23, 661–671 (2014)

    Article  Google Scholar 

  77. P.J. Gilgunn, L. Jingwei, N. Sarkar, G.K. Fedder, CMOS-MEMS lateral electrothermal actuators. J. Microelectromech. Syst. 17, 103–114 (2008)

    Article  Google Scholar 

  78. D.O. Popa, B.H. Kang, J.T. Wen, H.E. Stephanou, G. Skidmore, A. Geisberger, Dynamic modeling and input shaping of thermal bimorph MEMS actuators, in Proceedings of IEEE ICRA (IEEE, New York, 2003), pp. 1470–1475

    Google Scholar 

  79. K.R. Oldham, J.S. Pulskamp, R.G. Polcawich, M. Dubey, Thin-Film PZT lateral actuators with extended stroke. J. Microelectromech. Syst. 17, 890–899 (2008)

    Article  Google Scholar 

  80. M.W. Pruessner, T.H. Stievater, W.S. Rabinovich, In-plane microelectromechanical resonator with integrated Fabry–Pérot cavity. Appl. Phys. Lett. 92, 081101 (2008)

    Article  Google Scholar 

  81. U. Krishnamoorthy, R.H. Olsson III, G.R. Bogart, M.S. Baker, D.W. Carr, T.P. Swiler, P.J. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuator A 145–146, 283–290 (2008)

    Article  Google Scholar 

  82. L. Ji, Y. Zhu, S.O.R. Moheimani, M.R. Yuce, A micromachined 2DOF nanopositioner with integrated capacitive displacement sensor, in Proceedings of IEEE Sensors (IEEE, New York, 2010), pp. 1464–1467

    Google Scholar 

  83. Y. Zhu, S.O.R. Moheimani, M.R. Yuce, Simultaneous capacitive and electrothermal position sensing in a micromachined nanopositioner. IEEE Electron Device Lett. 32, 1146–1148 (2011)

    Article  Google Scholar 

  84. B. Koo, X. Zhang, J. Dong, S.M. Salapaka, P.M. Ferreira, A 2 degree-of-freedom SOI-MEMS translation stage with closed-loop positioning. J. Microelectromech. Syst. 21, 13–22 (2012)

    Article  Google Scholar 

  85. N. Yazdi, H. Kulah, K. Najafi, Precision readout circuits for capacitive microaccelerometers, in Proceedings of IEEE Sensors (IEEE, New York, 2004), pp. 28–31

    Google Scholar 

  86. J. Wu, G.K. Fedder, L.R. Carley, A low-noise low-offset capacitive sensing amplifier for a 50 μm/rt-Hz monolithic CMOS MEMS accelerometer. IEEE J. Solid-State Circuits 39, 722–730 (2004)

    Article  Google Scholar 

  87. J. Dong, P.M. Ferreira, Simultaneous actuation and displacement sensing for electrostatic drives. J. Micromech. Microeng. 18, 035011 (2008)

    Article  Google Scholar 

  88. S.I. Moore, S.O.R. Moheimani, Displacement measurement with a self-sensing MEMS electrostatic drive. J. Microelectromech. Syst. 23, 511–513 (2014)

    Article  Google Scholar 

  89. M.A. Lantz, G.K. Binnig, M. Despont, U. Drechsler, A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 16, 1089–1094 (2005)

    Article  Google Scholar 

  90. Y. Zhu, A. Bazaei, S.O.R. Moheimani, M.R. Yuce, A micromachined nanopositioner with on-chip electrothermal actuation and sensing. IEEE Electron Device Lett. 31, 1161–1163 (2010)

    Article  Google Scholar 

  91. J. Chow, Y. Lai, Displacement sensing of a micro-electro-thermal actuator using a monolithically integrated thermal sensor. Sens. Actuators A 150, 137–143 (2009)

    Article  Google Scholar 

  92. A. Mohammadi, M.R. Yuce, S.O.R. Moheimani, A low-flicker-noise MEMS electrothermal displacement sensing technique. J. Microelectromech. Syst. 21, 1279–1281 (2012)

    Article  Google Scholar 

  93. A.A. Barlian, W.-T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97, 513–552 (2009)

    Article  Google Scholar 

  94. A. Bazaei, M. Maroufi, A. Mohammadi, S.O.R. Moheimani, Displacement sensing with silicon flexures in MEMS nanopositioners. J. Microelectromech. Syst. 23, 502–504 (2014)

    Article  Google Scholar 

  95. J. Ouyang, Y. Zhu, Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control. J. Microelectromech. Syst. 21, 596–604 (2012)

    Article  Google Scholar 

  96. Y. Ando, T. Ikehara, S. Matsumoto, Design, fabrication and testing of new comb actuators realizing three-dimensional continuous motions. Sens. Actuators A 97–98, 579–586 (2002)

    Article  Google Scholar 

  97. C.-H. Kim, H.-M. Jeong, J.-U. Jeon, Y.-K. Kim, Silicon micro XY-stage with a large area shuttle and no-etching holes for SPM-based data storage. J. Microelectromech. Syst. 12, 470–478 (2003)

    Article  Google Scholar 

  98. Y. Ando, Development of three-dimensional electrostatic stages for scanning probe microscope. Sensors Actuators A 114, 285–291 (2004)

    Article  Google Scholar 

  99. L. Gu, X. Li, H. Bao, B. Liu, Y. Wang, M. Liu et~al., Single-wafer-processed nano-positioning XY-stages with trench-sidewall micromachining technology. J. Micromech. Microeng. 16, 1349–1357 (2006)

    Google Scholar 

  100. X. Chen, D.-W. Lee, Integrated microactuation scanning probe microscopy system. J. Vac. Sci. Technol. B 27, 1408–1412 (2009)

    Article  Google Scholar 

  101. Y.-S. Kim, N.G. Dagalakis, S.K. Gupta, Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features. J. Micromech. Microeng. 23, 055008 (2013)

    Article  Google Scholar 

  102. A.G. Fowler, A. Bazaei, S.O.R. Moheimani, Design and analysis of nonuniformly shaped heaters for improved MEMS-based electrothermal displacement sensing. J. Microelectromech. Syst. 22, 687–694 (2013)

    Article  Google Scholar 

  103. X. Zhang, B. Koo, S.M. Salapaka, J. Dong, P.M. Ferreira, Robust control of a MEMS probing device. IEEE/ASME Trans. Mechatron. 19, 100–108 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Gorman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorman, J.J. (2016). MEMS Nanopositioners. In: Ru, C., Liu, X., Sun, Y. (eds) Nanopositioning Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-23853-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23853-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23852-4

  • Online ISBN: 978-3-319-23853-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics