Skip to main content

Parallel-Kinematic Nanopositioning Stages Based on Roberts Mechanism

  • Chapter
Nanopositioning Technologies
  • 2242 Accesses

Abstract

This chapter presents the design of parallel-kinematic nanopositioning stages with large workspace and low crosstalk. Based on compliant Roberts mechanism, the design of multi-axis parallel compliant stage is synthesized. A new XY nanopositioning stage is studied in detail. Pseudo-rigid-body model (PRBM) is developed to build the quantitative models of the compliant Roberts mechanisms. In addition, finite-element analysis (FEA) is carried out to validate its performance. A prototype is fabricated and tested through experimental studies. Results show that the XY stage delivers a work range larger than 12 mm in each axis. Moreover, the parasitic motion of the stage in the non-working direction is less than 1.7 % of the motion stroke. It indicates that the designed stage meets the requirements of a large stroke and high precision linear guiding mechanism, which demonstrates the feasibility of the proposed design ideas using the Roberts mechanism. Moreover, a feedback control using PID control algorithm is implemented to demonstrate the positioning performance of the developed XY stage. The reported ideas can also be extended to the design and control of other types of micro-/nanopositioning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.G. Ambekar, Mechanism and Machine Theory (Prentice-Hall of India, New Delhi, 2007)

    Google Scholar 

  2. S. Awtar, A.H. Slocum, Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des. 129(8), 816–830 (2007)

    Article  Google Scholar 

  3. W. Chen, J. Jiang, W. Chen, J. Liu, A novel flexure-based uniaxial force sensor with large range and high resolution. Sci. China Technol. Sci. 58(8), 1940–1948 (2013)

    Article  MathSciNet  Google Scholar 

  4. W. Chen, J. Jiang, J. Liu, S. Bai, W. Chen, A passive eddy current damper for vibration suppression of a force sensor. J. Phys. D Appl. Phys. 46, 075001 (2013)

    Article  Google Scholar 

  5. Y.J. Choi, S.V. Sreenivasan, B.J. Choi, Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism. Mech. Mach. Theory 43(6), 724–737 (2008)

    Article  MATH  Google Scholar 

  6. K.B. Choi, H.J. Lim, G.H. Kim, J.J. Lee, A flexure-based scanner for a fully bidirectional operation driven by a differential piezo force. Proc. IME C J. Mech. Eng. Sci. 228(7), 3186–3199 (2014)

    Article  Google Scholar 

  7. D. Devaprakasam, S.K. Biswasa, Design of a flexure for surface forces apparatus. Rev. Sci. Instrum. 74(3), 1228–1235 (2003)

    Article  Google Scholar 

  8. L.L. Howell, Compliant Mechanisms (Wiley, New York, 2001)

    Google Scholar 

  9. Z.B. Huang, W.J. Ge, L.E. Ma, Research status quo of flexible mechanism and its application prospect in the field of bionic. J. Mach. Des. Res. 20(21), 279–252 (2004)

    MATH  Google Scholar 

  10. N.B. Hubbard, J.W. Wittwer, J.A. Kennedy, D.L. Wilcox, L.L. Howell, A novel fully compliant planar linear-motion mechanism, in Proceedings of ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1–5, Salt Lake City (2004)

    Google Scholar 

  11. D. Kang, K. Kim, D. Kim, J. Shim, D.G. Gweon, J. Jeong, Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range. Mechatronics 19(4), 562–570 (2009)

    Article  Google Scholar 

  12. Y. Lei, B.Y. Chen, Y.Z. Yang, Nanoscale research present situation and development trend of micro bench. J. Zhejiang Univ. Technol. 23(1), 72–82 (2006)

    Google Scholar 

  13. Y.M. Li, Q.S. Xu, Modeling and performance evaluation of a flexure-based XY parallel micromanipulator. Mech. Mach. Theory 44, 2127–2152 (2009)

    Article  MATH  Google Scholar 

  14. Z. Li, J. Yu, A novel large-range XY compliant parallel micro-manipulator. J. Changzhou Univ. 25(4), 14–19 (2013)

    Google Scholar 

  15. Y.T. Lin, J.J. Lee, Structural synthesis of compliant translational mechanisms, in Proceedings of 12th IFToMM World Congress, pp. 1–5 (2007)

    Google Scholar 

  16. S. Polit, J. Dong, Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing. IEEE/ASME Trans. Mechatron. 16(4), 724–733 (2011)

    Article  Google Scholar 

  17. X.D. Shi, J.L. Li, L.W. Wang, Design of large displacement and high precision linear stage based on laminated flexure hinge and ultrasonic motor. Manuf. Technol. Mach. Tool 2, 104–106 (2007)

    Google Scholar 

  18. K. Tan, G.H. Zong, S.S. Bi, Z. Yu, Multi-leaf configuration of expanded-motion-range flexure hinges. ProcDual Use Technologies & Products 3, 38–39 (2007)

    Google Scholar 

  19. X. Tang, I.M. Chen, Q. Li, Design and nonlinear modeling of a large-displacement xyz flexure parallel mechanism with decoupled kinematic structure. Rev. Sci. Instrum. 77(11), 115101 (2006)

    Google Scholar 

  20. B.P. Trease, Y.M. Moon, S. Kota, Design of large displacement compliant joints. J. Mech. Des. 127(4), 788–798 (2004)

    Article  Google Scholar 

  21. H. Wang, X.M. Zhang, Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage. Mech. Mach. Theory 43, 400–401 (2008)

    Article  MATH  Google Scholar 

  22. X.K. Wang, D. Wu, C.Y. Cheng, J. Mech. Eng. 10(5), 570–576 (1999) (Chinese)

    Google Scholar 

  23. Wikipedia (2007) http://commons.wikimedia.org/wiki/File:Roberts_linkage.gif

  24. Q.S. Xu, New flexure parallel-kinematic micro-positioning system with large workspace. IEEE Trans. Robot. 28(2), 478–491 (2012)

    Article  Google Scholar 

  25. Q.S. Xu, Design, testing and precision control of a novel long-stroke flexure micropositioning system. Mech. Mach. Theory 70, 209–224 (2013)

    Article  Google Scholar 

  26. Q.S. Xu, Design and development of a compact flexure-based XY precision positioning system with centimeter range. IEEE Trans. Ind. Electron. 61(2), 893–903 (2014)

    Article  Google Scholar 

  27. Q.S. Xu, Y.M. Li, Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mech. Mach. Theory 46, 183–200 (2011)

    Article  MATH  Google Scholar 

  28. S.L. Xu, D. Chen, Precision ultra-precision positioning technology and its application. J. Mech. Eng. 8(4), 73–75 (1997) (Chinese)

    Google Scholar 

  29. Y.D. Yan, T. Sun, S. Dong, With new drive micro displacement worktable design and experimental research. J. Mech. Eng. 37(5), 5 (2001)

    Google Scholar 

  30. Y.K. Yong, T.F. Lu, Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator. Mech. Mach. Theory 45, 756–771 (2010)

    Article  Google Scholar 

  31. Y.Q. Yu, L.L. Howell, C. Lusk, Y. Yue, M.G. He, Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model. J. Mech. Des. 127, 760–765 (2005)

    Article  Google Scholar 

  32. Z.J. Yuan, X.K. Wang, Precision and Ultra-Precision Machining Technology, pp. 1–3. (Machinery Industry Press, Beijing, China, 1999)

    Google Scholar 

  33. H. Zhao, Z.Q. Lv, The present situation and development trend of piezoelectric micro-positioning stage. J. Mod. Mach. 4, 33–35, 52 (2001)

    Google Scholar 

  34. S.S. Zhao, S.S. Bi, G.H. Zong, J. Yu, New large-deflection flexure pivot based on curved flexure element. Chin. J. Mech. Eng. 45(4), 8–12 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Macao Science and Technology Development Fund under Grant Nos.: 070/2012/A3 and 052/2014/A1, and the Research Committee of the University of Macau under Grant Nos.: MYRG083(L1-Y2)-FST12-XQS and MYRG078(Y1-L2)-FST13-XQS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wan, S., Xu, Q. (2016). Parallel-Kinematic Nanopositioning Stages Based on Roberts Mechanism. In: Ru, C., Liu, X., Sun, Y. (eds) Nanopositioning Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-23853-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23853-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23852-4

  • Online ISBN: 978-3-319-23853-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics