Skip to main content

Piezoelectric Motor Technology: A Review

  • Chapter
Nanopositioning Technologies

Abstract

Piezoelectric actuators are increasingly used in various nanopositioning applications and emerging applications where miniaturization is important. This is due to their unique characteristics including their very high accuracy and short response time as compared to electromagnetic based motors and actuators and higher output force compared to electrostatic actuators. Piezoelectric motors use actuators that take advantage of the converse piezoelectric effect. In this chapter, these motors are classified into quasistatic and ultrasonic motors (USMs) based on their working frequency. Several designs from the literature and commercial suppliers are reviewed and their characteristics are presented. Two examples of piezoelectric motors are discussed in detail. These include a piezoworm stage and a USM with segmented electrodes. Future development of these technologies is also briefly discussed addressing issues such as increasing the output power, the efficiency, and further miniaturization of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Okazaki, Precision positioning control apparatus and precision positioning control method. U.S. Patent 5,801,939, 1998

    Google Scholar 

  2. W. Yao, M. Tomizuka, Robust controller design for a dual-stage positioning system, in Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation, vol. 1, 1993, pp. 62–66

    Google Scholar 

  3. K. Tsai, J. Yen, Servo system design of a high-resolution piezo-driven fine stage for step-and repeat microlithography systems, in Proceedings of Annual Conference of Industrial Electronics Society, vol. 1, 1999, pp. 11–16

    Google Scholar 

  4. S. Kwon, W. Chang, Y. Youm, Robust and time-optimal control strategy for coarse/fine dual-stage manipulators, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, 2000, pp. 4051–4056

    Google Scholar 

  5. S. Kwon, W. Chang, Y. Youm, On the coarse/fine dual-stage manipulators with robust perturbation compensator, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 2001, pp. 121–126

    Google Scholar 

  6. B. Zhang, Z. Zhu, Developing a linear piezomotor with nanometer resolution and high stiffness. IEEE/ASME Trans. Mechatron. 2(1), 22–29

    Google Scholar 

  7. C. Zhao, Ultrasonic Motors: Technologies and Applications (Springer, Berlin, 2011)

    Book  Google Scholar 

  8. B. Watson, J. Friend, L. Yeo, Piezoelectric ultrasonic micro/milli-scale actuators. Sens. Actuators A Phys. 152(2), 219–233 (2009)

    Article  Google Scholar 

  9. F. Ba-Tis, R. Ben-Mrad, A 3-DOF MEMS electrostatic piston-tube actuator. J. Microelectromech. Syst. 24(4), 1173–1184 (2015)

    Google Scholar 

  10. D.K.C. Liu, J. Friend, L. Leo, A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoust. Sci. Technol. 31(2), 115–123 (2010)

    Article  Google Scholar 

  11. R. Ben-Mrad, H. Hu, Dynamic modeling of hysteresis in piezoceramics, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 1, 2001, pp.510–515

    Google Scholar 

  12. A. Henke, M.A. Kümmel, J. Wallaschek, A piezoelectrically driven wire feeding system for high performance wedge-wedge-bonding machines. Mechatronics 9(7), 757–767 (1999)

    Article  Google Scholar 

  13. J. Wallaschek, Ultrasonic motor research in Germany—past, present, future, in Proceedings of the First International Workshop on Ultrasonic Motors and Actuators (2005)

    Google Scholar 

  14. J. Wallaschek, Piezoelectric ultrasonic motors. J. Intell. Mater. Syst. Struct. 6(1), 71–83 (1995)

    Article  Google Scholar 

  15. K. Uchino, Piezoelectric ultrasonic motors: overview. Smart Mater. Struct. 7(3), 273 (1998)

    Article  MathSciNet  Google Scholar 

  16. V.V. Lavrinenko, M. Nekrasov, Piezoelectric motor. Soviet Patent 217509 (1965)

    Google Scholar 

  17. H.V. Barth, Ultrasonic drive motor. IBM Technical Disclosure Bulletin 16(7), 2263 (1973)

    Google Scholar 

  18. P.E. Vasiliev, V.S. Dvornin, A.V. Kondratiev, V.F. Kravchenko, U.S. Patent 4,240,141 (U.S. Patent and Trademark Office, Washington, DC, 1980)

    Google Scholar 

  19. T. Sashida, Trial construction and operation of an ultrasonic vibration driven motor. Oyo Butsiuri 6(5), 713–718 (1982)

    Google Scholar 

  20. T. Sashida, Motor device utilizing ultrasonic oscillation. U.S. Patent 4,562,374 (U.S. Patent and Trademark Office, Washington, DC, 1985)

    Google Scholar 

  21. A. Kumada, A piezoelectric ultrasonic motor. Jpn. J. Appl. Phys. 24(S2), 739 (1985)

    Article  Google Scholar 

  22. Y. Ise, Ultrasonic motor. J. Acoust. Soc. Jpn. 54, 6 (1987)

    Google Scholar 

  23. I. Prisacariu, C. C. Filipiuc, A general view on the classification and operating principle of piezoelectric ultrasonic motors. (2012 International Conference and Exposition on Electrical and Power Engineering (EPE 2012), 25–27 October, Iasi, Romania)

    Google Scholar 

  24. K. Spanner, Survey of the various operating principles of ultrasonic piezomotors, in Proceedings of the 10th International Conference on New Actuators, June 2006

    Google Scholar 

  25. S.P. Salisbury, D.F. Waechter, R. Ben-Mrad, S.E. Prasad, R.G. Blacow, B. Yan, Closed-loop control of a complementary clamp piezoworm actuator. IEEE/ASME Trans. Mechatron. 12(6), 590–598 (2007)

    Article  Google Scholar 

  26. S. Salisbury, D.F. Waechter, R. Ben-Mrad, S.E. Prasad, R.G. Blacow, B. Yan, Complementary inchworm actuator for high-force, high-precision applications. IEEE/ASME Trans. Mechatron. 11(3), 265–272 (2006)

    Article  Google Scholar 

  27. P.E. Tenzer, R. Ben-Mrad, A systematic procedure for the design of piezoelectric inchworm precision positioners. IEEE/ASME Trans. Mechatron. 9(2), 427–435 (2004)

    Article  Google Scholar 

  28. D. Roberts, Development of a linear piezoelectric motor based on the inchworm model, in 1999 Symposium on Smart Structures and Materials (International Society for Optics and Photonics, 1999), pp. 705–716.

    Google Scholar 

  29. J. Li, R. Sedaghati, J. Dargahi, D. Waechter, Design and development of a new piezoelectric linear Inchworm actuator. Mechatronics 15(6), 651–681 (2005)

    Article  Google Scholar 

  30. J. E. Frank, G. H. Koopmann, W. Chen, G. A. Lesieutre, Design and performance of a high-force piezoelectric inchworm motor, in 1999 Symposium on Smart Structures and Materials (International Society for Optics and Photonics, 1999), pp. 717–723

    Google Scholar 

  31. T. Pandell, E. Garcia, Design of a piezoelectric caterpillar motor, in Proceedings of ASME Aerospace Division, vol. 52, 1996, pp. 627–648

    Google Scholar 

  32. S.P. Salisbury, R. Ben-Mrad, D.F. Waechter, S.E. Prasad, Design, modeling, and closed-loop control of a complementary clamp piezoworm stage. IEEE/ASME Trans. Mechatron. 14(6), 724–732 (2009)

    Article  Google Scholar 

  33. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997)

    Google Scholar 

  34. “L-104,” Micro Pulse Systems Inc., [Online document], http://www.micropulsesystems.com, seen on 27 May 2002

  35. http://www.physikinstrumente.com/technology/, seen on 5 March 2015

  36. http://piezomotor.ports-it.net/technology/, seen on 5 March 2015

  37. http://evolution.skf.com/, “Micromotor packs a punch”, online article, seen on February 2015

  38. J. Oliver, R. Neurogaonkar, J. Nelson, C. Bertolini, Rotary piezoelectric motor for vehicle applications. U.S. Patent 5,780,956 (1998)

    Google Scholar 

  39. K. Ohnishi, M. Umeda, M. Kurosawa, S. Ueha, Rotary Inchworm-type piezoelectric actuator. Electr. Eng. Jpn. 110(3), 107–109 (1990)

    Article  Google Scholar 

  40. K. Duong, E. Garcia,. Development of a rotary inchworm piezoelectric motor, in Proceedings SPIE Smart Structures and Materials, vol. 2445, 1995, pp. 782–788

    Google Scholar 

  41. S. Gursan, Development of a continuous-motion piezoelectric rotary actuator for mechatronics and micropositioning applications. MASc Dissertation, University of Victoria (1996)

    Google Scholar 

  42. K. Mori, Piezoelectric rotary actuator. U.S. Patent 4,468,583 (1984)

    Google Scholar 

  43. P.E. Tenzer, R. Ben-Mrad, On amplification in inchworm™ precision positioners. Mechatronics 14(5), 515–531 (2004)

    Article  Google Scholar 

  44. P. Tenzer, R. Ben-Mrad, Amplification in Inchworm precision positioners, in 1st joint Canada-US Workshop on Smart Materials and Structures (St. Hubert, Quebec, Canada, 2001), pp.77–84, 17–18 September 2001

    Google Scholar 

  45. S.P. Salisbury, R. Ben-Mrad, Analytical stiffness estimation for short flexures. Mechatronics 16(7), 399–403 (2006)

    Article  Google Scholar 

  46. T. Hemsel, J. Wallaschek, A piezoelectric linear vibration drive for high driving force. J Vibroengineering 1, 7–12 (1999)

    Google Scholar 

  47. J. Zumeris, Ceramic motor. U.S. Patent 6,064,140 (2000)

    Google Scholar 

  48. O. Vyshnevsky, S. Kovalev, W. Wischnewskiy, A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 52(11), 2047–2053 (2005)

    Article  Google Scholar 

  49. T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors (Oxford Press, New York, 1993)

    Google Scholar 

  50. http://www.nanomotor.de/p_nanomotor.htm, seen on April 1, 2015

  51. V. Klocke, Atomic precision and millimeter range, in Feinwerktechnik, Mikrotechnik, Mikroelektronik, vol. 104 (1996)

    Google Scholar 

  52. Y. Liu, W. Chen, J. Liu, S. Shi, A cylindrical standing wave ultrasonic motor using bending vibration transducer. Ultrasonics 51(5), 527–531 (2011)

    Article  Google Scholar 

  53. S. Park, S. He, Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics 52(7), 880–889 (2012)

    Article  Google Scholar 

  54. X. Lu, J. Hu, L. Yang, C. Zhao, A novel dual stator-ring rotary ultrasonic motor. Sens. Actuators A Phys. 189, 504–511 (2013)

    Article  Google Scholar 

  55. Y. Liu, J. Liu, W. Chen, S. Shi, A cylindrical traveling wave ultrasonic motor using longitudinal vibration transducers. Ferroelectrics 409(1), 117–127 (2010)

    Article  Google Scholar 

  56. Y. Liu, W. Chen, J. Liu, S. Shi, A cylindrical traveling wave ultrasonic motor using longitudinal and bending composite transducer. Sens. Actuators A Phys. 161(1), 158–163 (2010)

    Article  Google Scholar 

  57. Y. Liu, W. Chen, P. Feng, J. Liu, A rotary piezoelectric motor using bending vibrators. Sens. Actuators A Phys. 196, 48–54 (2013)

    Article  Google Scholar 

  58. Y. Liu, W. Chen, P. Feng, J. Liu, A square-type rotary ultrasonic motor with four driving feet. Sens. Actuators A Phys. 180, 113–119 (2012)

    Article  Google Scholar 

  59. X. Lu, J. Hu, L. Yang, C. Zhao, A novel in-plane mode rotary ultrasonic motor. Chin. J. Aeronaut. 27(2), 420–424 (2014)

    Article  Google Scholar 

  60. Y. Liu, W. Chen, J. Liu, S. Shi, A rotary ultrasonic motor using bending vibration transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2360–2364 (2010)

    Article  Google Scholar 

  61. Y.X. Liu, J.K. Liu, W.S. Chen, X.H. Yang, A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation. J. Zhejiang Univ. Sci. A 13(3), 189–196 (2012)

    Article  MathSciNet  Google Scholar 

  62. Y. Ting, J.M. Yang, C.C. Li, C.C. Yang, Y.C. Shao, P3P-6 modeling and design of a linear actuator by Langevin vibrators, in Ultrasonics Symposium, 2006. IEEE (2006), pp. 2337–2340

    Google Scholar 

  63. E. Moreno, P. Acevedo, M. Fuentes, M. Sotomayor, M. Borroto, M.E. Villafuerte, L. Leija, Design and construction of a bolt-clamped Langevin transducer, in International Conference on Electrical and Electronics Engineering, Proceedings (2005), pp. 393–395

    Google Scholar 

  64. T. Morita, M.K. Kurosawa, T. Higuchi, Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT). Jpn. J. Appl. Phys. 38(5S), 3347 (1999)

    Article  Google Scholar 

  65. T. Morita, M. Kuribayashi Kurosawa, T. Higuchi, A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L= 10 mm stator transducer). IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1178–1187 (1998)

    Article  Google Scholar 

  66. J. Hu, K. Nakamura, S. Ueha, An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor. Ultrasonics 35(6), 459–467 (1997)

    Article  Google Scholar 

  67. Y. Yamayoshi, S. Hirose, Improvement of Characteristics of Noncontact Ultrasonic Motor Using Acoustically Coupled Two Air Gaps. Jpn. J. Appl. Phys. 50(7) (2011)

    Google Scholar 

  68. Y. Yamayoshi, J. Shiina, H. Tamura, S. Hirose, Noncontact ultrasonic motor with two flexural standing wave vibration disks. Jpn. J. Appl. Phys. 48(9S1), 09KD10 (2009)

    Google Scholar 

  69. J. Lau, S.I. Gubarenko, R. Ben-Mrad, A novel plate-type linear ultrasonic motor with segmented electrodes, in Proceedings of the 1st VMPT (Montreal, QC, 2012)

    Google Scholar 

  70. X. Li, W.S. Chen, T. Xie, J.K. Liu, Novel high torque bearingless two-sided rotary ultrasonic motor. J. Zhejiang Univ. Sci. A 8(5), 786–792 (2007)

    Article  Google Scholar 

  71. C.Y. Lu, J.L. Li, W.Y. Pi, Ultrasonic motors using shear-type piezoelectric ceramics, in 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), IEEE (2010, December), pp. 465469

    Google Scholar 

  72. Z. Li, C. Zhao, W. Huang, Z.L. Li, Several key issues in developing of cylinder type 3-DOF ultrasonic motor. Sens. Actuators A Phys. 136(2), 704–709 (2007)

    Article  Google Scholar 

  73. W. Qiu, Y. Mizuno, D. Koyama, K. Nakamura, Analysis of lubricating effect of hybrid transducer-type ultrasonic motor, in Proceedings of 32 nd Symposium on Ultrasonic Electronics 32(2E4-3) (2011, November), pp. 301–302

    Google Scholar 

  74. S. He, P.R. Chiarot, S. Park, A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 1049–1061 (2011)

    Article  Google Scholar 

  75. S.S. Jeong, T.G. Park, M.H. Kim, T.K. Song, Characteristics of a V-type ultrasonic rotary motor. Curr. Appl. Phys. 11(3), S364–S367 (2011)

    Article  Google Scholar 

  76. Y. Hojjat, M.R. Karafi, Introduction of roller interface ultrasonic motor (RIUSM). Sens. Actuators A Phys. 163(1), 304–310 (2010)

    Article  Google Scholar 

  77. T. Park, S. Jeong, H. Chong, K. Uchino, Design of thin cross type ultrasonic motor. J. Electroceramics 24(4), 288–293 (2010)

    Article  Google Scholar 

  78. G.L. Smith, R.Q. Rudy, R.G. Polcawich, D.L. DeVoe, Integrated thin-film piezoelectric traveling wave ultrasonic motors. Sens. Actuators A Phys. 188, 305–311 (2012)

    Article  Google Scholar 

  79. X. Lu, J. Hu, L. Yang, C. Zhao, Principle and experimental verification of novel dual driving face rotary ultrasonic motor. Chin. J. Mech. Eng. 26(5), 1006–1012 (2013)

    Article  Google Scholar 

  80. J.H. Hu, K. Nakamura, S. Ueha, Characteristics of a noncontact ultrasonic motor using acoustic levitation, in Proceedings of Ultrasonics Symposium, 1996. IEEE, vol. 1 (1996, November), pp.373–376

    Google Scholar 

  81. Y. Yamayoshi, S. Hirose, Ultrasonic motor not using mechanical friction force. Int. J. Appl. Electromagn. Mater. 3, 179–182 (1992)

    Google Scholar 

  82. S. Hirose, Y. Yamayoshi, H. Ono, A small noncontact ultrasonic motor, in Proceedings of Ultrasonics Symposium, 1993. IEEE (1993), pp. 453–456

    Google Scholar 

  83. J. Liu, B. Wu, Z. Yang et al., A new type of circular cylindrical non-contact ultrasonic motor. Acta Acustica 3(2), 113–116 (2001) (In Chinese)

    Google Scholar 

  84. Y. Ji, C. Zhao, A new type non-contact ultrasonic motor with higher revolution speed. Piezoelectrics & Acoustooptics 28, 527–533 (2006)

    Google Scholar 

  85. Y. Ji, C.S. Zhao, Cylinder type non-contact ultrasonic motor. J. Nanjing. Univ. Aeronaut. Astronaut. 37(6), 690–693 (2005)

    Google Scholar 

  86. B. Yang, J. Liu, D. Chen, B. Cai, Theoretical and experimental research on a disk-type non-contact ultrasonic motor. Ultrasonics 44(3), 238–243 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Ben Mrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shafik, A., Ben Mrad, R. (2016). Piezoelectric Motor Technology: A Review. In: Ru, C., Liu, X., Sun, Y. (eds) Nanopositioning Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-23853-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23853-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23852-4

  • Online ISBN: 978-3-319-23853-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics