Skip to main content

A Review of Stick–Slip Nanopositioning Actuators

  • Chapter
Nanopositioning Technologies

Abstract

There is a surge in the development of actuators based on the stick–slip of piezoelectric actuators in the past decade for the advantages of nanoscale resolution and long travel distances. These actuators, termed PSTA (piezoelectric stick–slip actuators), are widely used in chip assembly and cell manipulation. This chapter provides a comprehensive review of PSTA systems. Reported PSTAs are generalized with two specific principles which can be considered as a framework to further classify other PSTAs. In addition, the applications of PSTAs are categorized into two groups according to the number of degrees of freedom (DOF). This chapter also discusses driving signals to actuate different structures of PSTAs and control methods to achieve high positioning resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Ouyang, R. Tjiptoprodjo, W. Zhang, G. Yang, Micro-motion devices technology: the state of arts review. Int. J. Adv. Manuf. Technol. 38(5–6), 463–478 (2008)

    Article  Google Scholar 

  2. A.L. Soderqvist, U.S. Patent 3,957,162, 1976

    Google Scholar 

  3. Z. Zhang, Q. An, J. Li, W. Zhang, Piezoelectric friction–inertia actuator—a critical review and future perspective. Int. J. Adv. Manuf. Technol. 62(5–8), 669–685 (2012)

    Article  Google Scholar 

  4. B.W. Zhong, Research on key technologies of cross-scale precision platform based on stick–slip driving. Dissertation, Harbin Institute of Technology, 2012

    Google Scholar 

  5. W.S. Owen, E.A. Croft, The reduction of stick–slip friction in hydraulic actuators. IEEE/ASME Trans. Mechatron. 8(3), 362–371 (2003)

    Article  Google Scholar 

  6. J. Peng, X. Chen, Modeling of piezoelectric-driven stick–slip actuators. IEEE/ASME Trans. Mechatron. 16(2), 394–399 (2011)

    Article  Google Scholar 

  7. J. Li, G. Yang, W. Zhang, S. Tu, X. Chen, Thermal effect on piezoelectric stick–slip actuator systems. Rev. Sci. Instrum. 79(4), 046108 (2008)

    Article  Google Scholar 

  8. Q. Zhang, X. Chen, Q. Yang, W. Zhang, Development and characterization of a novel piezoelectric-driven stick–slip actuator with anisotropic-friction surfaces. Int. J. Adv. Manuf. Technol. 61(9–12), 1029–1034 (2012)

    Article  Google Scholar 

  9. T. Higuchi, M. Watanabe, U.S. Patent 4,894,579, 1990

    Google Scholar 

  10. J.L. Ha, R.F. Fung, C.S. Yang, Hysteresis identification and dynamic responses of the impact drive mechanism. J. Sound Vib. 283(3), 943–956 (2005)

    Article  Google Scholar 

  11. Y.-T. Liu, T. Higuchi, R.-F. Fung, A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis. Precis. Eng. 27(1), 22–31 (2003)

    Article  Google Scholar 

  12. Z.J. Du, W. Dong, L.N. Sun, The flexure hinge and its application in the precision parallel robot. J. Harbin Inst. Technol. 38(9), 1469–1473 (2006)

    Google Scholar 

  13. J.M. Paros, How to design flexure hinges. Mach. Des. 37, 151–156 (1965)

    Google Scholar 

  14. F.S. Eastman, The design of flexure pivots. J. Aeronaut. Sci. (Inst. Aeronaut. Sci.) 4(1) (2012)

    Google Scholar 

  15. B. Armstrong-Helouvry, Control of Machines with Friction, vol 128 (Springer Science & Business Media, 1991)

    Google Scholar 

  16. K.-J. Lim, J.-S. Lee, S.-H. Park, S.-H. Kang, H.-H. Kim, Fabrication and characteristics of impact type ultrasonic motor. J. Eur. Ceram. Soc. 27(13), 4159–4162 (2007)

    Article  Google Scholar 

  17. Y. Okamoto, Y. Tanijiri, U.S. Patent 6,092,431, 2000

    Google Scholar 

  18. R. Yoshida, Y. Okamoto, T. Higuchi, A. Hamamatsu, Development of smooth impact drive machine—proposal of driving mechanism and basic performance (in Japanese). J. Jpn. Soc. Precis. Eng. 65(1), 111–115 (1999)

    Article  Google Scholar 

  19. S. Chang, S. Li, A high resolution long travel friction-drive micropositioner with programmable step size. Rev. Sci. Instrum. 70(6), 2776–2782 (1999)

    Article  Google Scholar 

  20. Y. Wang, S. Chang, Design and performance of a piezoelectric actuated precise rotary positioner. Rev. Sci. Instrum. 77(10), 105101 (2006)

    Article  MathSciNet  Google Scholar 

  21. C.-L. Chu, S.-H. Fan, A novel long-travel piezoelectric-driven linear nanopositioning stage. Precis. Eng. 30(1), 85–95 (2006)

    Article  MathSciNet  Google Scholar 

  22. C. Belly, MRI-compliant piezo micro-actuator (2009), http://www.lirmm.fr/uee09/doc/Student_s_%20presentations/Christian_Belly.pdf. Accessed 7 Jan 2010

  23. F. Claeyssen, A. Ducamp, F. Barillot, R. Le Letty, T. Porchez, O. Sosnicki, C. Belly, Stepping piezoelectric actuators based on APAs, in Proceedings of the Actuator, 2008

    Google Scholar 

  24. B.B. Nie, Research on precision rotary positioner based on stick–slip driving. Dissertation, Harbin Institute of Technology, 2013

    Google Scholar 

  25. Z.S.R.W.T. Guoan, Y.M.S. Lining, Designing and dynamic modeling of 1D nanopositioner based on stick–slip motion principle. J. Mech. Eng. 19, 004 (2012)

    Google Scholar 

  26. W. Rong, S. Zhang, M. Yu, L. Sun, A 3D stick–slip nanopositioner for nanomanipulation, in International Conference on Mechatronics and Automation (ICMA) (IEEE, 2011), pp. 195–199

    Google Scholar 

  27. D.W. Pohl, Dynamic piezoelectric translation devices. Rev. Sci. Instrum. 58(1), 54–57 (1987)

    Article  MathSciNet  Google Scholar 

  28. Y. Okamoto, R. Yoshida, Development of linear actuators using piezoelectric elements. Electron. Commun. Jpn. (Part III: Fundamental Electronic Science) 81(11), 11–17 (1998)

    Article  Google Scholar 

  29. N. Agrait, Vertical inertial piezoelectric translation device for a scanning tunneling microscope. Rev. Sci. Instrum. 63(1), 263–264 (1992)

    Article  Google Scholar 

  30. I. Altfeder, A. Volodin, Low-temperature scanning tunneling microscope with a reliable piezoelectrical coarse approach mechanism. Rev. Sci. Instrum. 64(11), 3157–3160 (1993)

    Article  Google Scholar 

  31. C. Renner, P. Niedermann, A. Kent, A vertical piezoelectric inertial slider. Rev. Sci. Instrum. 61(3), 965–967 (1990)

    Article  Google Scholar 

  32. V. Yakimov, Vertical ramp-actuated inertial micropositioner with a rolling-balls guide. Rev. Sci. Instrum. 68(1), 136–139 (1997)

    Article  Google Scholar 

  33. R. Yoshida, Y. Okamoto, K. Ishibashi, Y. Tanijiri, H. Okada, Movable stage utilizing electromechanical transducer. Google Patents, 1998

    Google Scholar 

  34. Q.-h. Lu, Z.-j. Gao, G.-z. Yan, D.-t. Yan, The study on miniature inertial piezo-actuators. Piezoelectrics Acoustooptics 2, 009 (2004)

    Google Scholar 

  35. Sasaki, U.S. Patent 0,036,533 A1, 2007

    Google Scholar 

  36. T. Jiang, T. Ng, K. Lam, Optimization of a piezoelectric ceramic actuator. Sens. Actuators A: Phys. 84(1), 81–94 (2000)

    Article  Google Scholar 

  37. A. Darby, S. Pellegrino, Inertial stick–slip actuator for active control of shape and vibration. J. Intell. Mater. Syst. Struct. 8(12), 1001–1011 (1997)

    Article  Google Scholar 

  38. H.-j. Zhang, F. Huang, Piezo impact drive mechanism for precise approach and manipulation. J. Zhejiang Univ. Eng. Sci. 34(5), 519–522 (2000)

    Google Scholar 

  39. Y. Yamagata, T. Higuchi, A micropositioning device for precision automatic assembly using impact force of piezoelectric elements, in 1995 IEEE International Conference on Robotics and Automation (ICRA) (1995) pp. 666–671

    Google Scholar 

  40. T. Higuchi, K. Furutani, Y. Yamagata, K.-i. Kudoh, M. Ogawa, Improvement of velocity of impact drive mechanism by controlling friction. J. Jpn. Soc. Precis. Eng. Seimitsu Kogaku Kaishi 58(8), 1327–1332 (1992)

    Article  Google Scholar 

  41. J.M. Breguet, Actuionneurs “stick and slip” pour micromanipulateurs. Dissertation, École Polytechnique Fédérale de Lausanne, 1998

    Google Scholar 

  42. L. Libioulle, A. Ronda, I. Derycke, J. Vigneron, J. Gilles, Vertical two-dimensional piezoelectric inertial slider for scanning tunneling microscope. Rev. Sci. Instrum. 64(6), 1489–1494 (1993)

    Article  Google Scholar 

  43. A. Bergander, W. Driesen, A. Lal, T. Varidel, M. Meizoso, H. Bleuler, J.-M. Breguet, Position feedback for microrobots based on scanning probe microscopy, in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2004), pp. 1734–1739

    Google Scholar 

  44. B. Blackford, M. Jericho, Simple two-dimensional piezoelectric micropositioner for a scanning tunneling microscope. Rev. Sci. Instrum. 61(1), 182–184 (1990)

    Article  Google Scholar 

  45. L. Howald, H. Rudin, H.J. Güntherodt, Piezoelectric inertial stepping motor with spherical rotor. Rev. Sci. Instrum. 63(8), 3909–3912 (1992)

    Article  Google Scholar 

  46. B. Blackford, M. Jericho, M. Boudreau, A vertical/horizontal two-dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications. Rev. Sci. Instrum. 63(4), 2206–2209 (1992)

    Article  Google Scholar 

  47. H. Zhang, G. Cheng, H. Zhao, P. Zeng, Z. Yang, Two dimensional precise actuator driven by piezoelectric bimorph impact. J. Jilin Univ. (Eng. Technol. Ed.) 36(1), 67–71 (2006)

    Google Scholar 

  48. J.M. Wen, Study on planar inertia piezoelectric moving mechanism. Dissertation, Jilin University, 2009

    Google Scholar 

  49. M. Göken, Scanning tunneling microscopy in UHV with an X, Y, Z micropositioner. Rev. Sci. Instrum. 65(7), 2252–2254 (1994)

    Article  Google Scholar 

  50. R. Brockenbrough, J. Lyding, Inertial tip translator for a scanning tunneling microscope. Rev. Sci. Instrum. 64(8), 2225–2228 (1993)

    Article  Google Scholar 

  51. J. Tapson, J. Greene, A simple dynamic piezoelectric X-Y translation stage suitable for scanning probe microscopes. Rev. Sci. Instrum. 64(8), 2387–2388 (1993)

    Article  Google Scholar 

  52. C. Meyer, O. Sqalli, H. Lorenz, K. Karrai, Slip–stick step-scanner for scanning probe microscopy. Rev. Sci. Instrum. 76(6), 063706 (2005)

    Article  Google Scholar 

  53. A. Morin, New friction experiments carried out at Metz in 1831–1833. Proc. Fr. R. Acad. Sci. 4(1), 128 (1833)

    Google Scholar 

  54. C.C. De Wit, J. Carrillo, A modified EW-RLS algorithm for systems with bounded disturbances. Automatica 26(3), 599–606 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  55. L.L. Liu, H.Z. Liu, Z.Y. Wu, Z.M. Wang, The application of the friction model in mechanical system. Adv. Mech. 38(2), 201–212 (2008)

    Google Scholar 

  56. V. Johannes, M. Green, C. Brockley, The role of the rate of application of the tangential force in determining the static friction coefficient. Wear 24(3), 381–385 (1973)

    Article  Google Scholar 

  57. C.C. De Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MATH  Google Scholar 

  58. P.R. Dahl, Solid friction damping of spacecraft vibrations, in 1995 IEEE International Conference on AIAA Guidance and Control Conference (1995), pp. 1075–1104

    Google Scholar 

  59. P.R. Dahl, Solid friction damping of mechanical vibrations. AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  60. D.A. Haessig, B. Friedland, On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113(3), 354–362 (1991)

    Article  Google Scholar 

  61. N. Barahanov, R. Ortega, Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Trans. Autom. Control 45(4), 830–832 (2000)

    Article  Google Scholar 

  62. J. Swevers, F. Al-Bender, C.G. Ganseman, T. Projogo, An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45(4), 675–686 (2000)

    Article  MATH  Google Scholar 

  63. V. Lampaert, J. Swevers, F. Al-Bender, Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002)

    Article  MathSciNet  Google Scholar 

  64. K. Johanastrom, C. Canudas-De-Wit, Revisiting the LuGre friction model. IEEE Control Syst. 28(6), 101–114 (2008)

    Article  MathSciNet  Google Scholar 

  65. J. Wang, Q. Lu, How are the behaviors of piezoelectric inertial sliders interpreted? Rev. Sci. Instrum. 83(9), 093701 (2012)

    Article  Google Scholar 

  66. A. Stieg, P. Wilkinson, J. Gimzewski, Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. Rev. Sci. Instrum. 78(3), 036110 (2007)

    Article  Google Scholar 

  67. K. Anantheshwara, N. Murali, M. Bobji, Effect of friction on the performance of inertial slider. Sadhana 33(3), 221–226 (2008)

    Article  Google Scholar 

  68. W.F. Smith, M. Abraham, J. Sloan, M. Switkes, Simple retrofittable long-range x–y translation system for scanned probe microscopes. Rev. Sci. Instrum. 67(10), 3599–3604 (1996)

    Article  Google Scholar 

  69. K. Svensson, Y. Jompol, H. Olin, E. Olsson, Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev. Sci. Instrum. 74(11), 4945–4947 (2003)

    Article  Google Scholar 

  70. S. Reymond, Low temperature scanning contact potentiometry. Rev. Sci. Instrum. 75(3), 694–698 (2004)

    Article  Google Scholar 

  71. J.-M. Breguet, R. Perez, A. Bergander, C. Schmitt, R. Clavel, H. Bleuler, Piezoactuators for motion control from centimeter to nanometer, in 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2000), pp. 492–497

    Google Scholar 

  72. M. Rakotondrabe, Y. Haddab, P. Lutz, Voltage/frequency proportional control of stick–slip micropositioning systems. IEEE Trans. Control Syst. Technol. 16(6), 1316–1322 (2008)

    Article  Google Scholar 

  73. B. Sedghi, Control design of hybrid systems via dehybridization (2003)

    Google Scholar 

  74. H.K. Khalil, J. Grizzle, Nonlinear Systems, vol. 3 (Prentice Hall, Upper Saddle River, 2002)

    MATH  Google Scholar 

  75. J.-M. Breguet, R. Clavel, Stick and slip actuators: design, control, performances and applications, in 1998 IEEE International Symposium on Micromechatronics and Human Science (MHS) (IEEE, 1998), pp. 89–95

    Google Scholar 

  76. P. Niedermann, R. Emch, P. Descouts, Simple piezoelectric translation device. Rev. Sci. Instrum. 59(2), 368–369 (1988)

    Article  Google Scholar 

  77. T. Morita, R. Yoshida, Y. Okamoto, M.K. Kurosawa, T. Higuchi, A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1439–1445 (1999)

    Article  Google Scholar 

  78. Y. Zhang, W. Zhang, J. Hesselbach, H. Kerle, Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Rev. Sci. Instrum. 77(3), 035112 (2006)

    Article  Google Scholar 

  79. T. Morita, R. Yoshida, Y. Okamoto, T. Higuchi, Three DOF parallel link mechanism utilizing smooth impact drive mechanism. Precis. Eng. 26(3), 289–295 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pan, P., Yang, F., Wang, Z., Zhong, B., Sun, L., Ru, C. (2016). A Review of Stick–Slip Nanopositioning Actuators. In: Ru, C., Liu, X., Sun, Y. (eds) Nanopositioning Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-23853-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23853-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23852-4

  • Online ISBN: 978-3-319-23853-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics