Skip to main content

Pathogenesis of AAA Rupture

  • Chapter
  • First Online:
Ruptured Abdominal Aortic Aneurysm

Abstract

Mechanisms of abdominal aortic aneurysm degeneration have been the subject of intense investigation over the last 20 years. As noted in Fig. 4.1, the pathogenesis of abdominal aortic aneurysm disease involves a symphony of interactions between genetic risk, environmental exposures, and interplay between aortic mural inflammation, angiogenesis, smooth muscle cell and elastin depletion, wall strain, and dysfunctional and insufficient regenerative responses of the extracellular matrix [1–10] (Table 4.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011;8(2):92–102.

    Article  PubMed  Google Scholar 

  2. Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep. 2002;4(3):222–7.

    Article  PubMed  Google Scholar 

  3. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(3):429–34.

    Article  CAS  PubMed  Google Scholar 

  4. Thompson RW, Curci JA, Ennis TL, Mao D, Pagano MB, Pham CT. Pathophysiology of abdominal aortic aneurysms: insights from the elastase-induced model in mice with different genetic backgrounds. Ann N Y Acad Sci. 2006;1085:59–73.

    Article  CAS  PubMed  Google Scholar 

  5. Trollope A, Moxon JV, Moran CS, Golledge J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc Pathol: Off Jo Soc Cardiovasc Pathol. 2011;20(2):114–23.

    Article  Google Scholar 

  6. Dobrin PB, Baker WH, Gley WC. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg. 1984;119(4):405–9.

    Article  CAS  PubMed  Google Scholar 

  7. Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg. 1994;2(4):484–8.

    CAS  PubMed  Google Scholar 

  8. Sakalihasan N, Heyeres A, Nusgens BV, Limet R, Lapiere CM. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur J Vasc Surg. 1993;7(6):633–7.

    Article  CAS  PubMed  Google Scholar 

  9. Rizzo RJ, McCarthy WJ, Dixit SN, Lilly MP, Shively VP, Flinn WR, et al. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg. 1989;10(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson RW, Liao S, Curci JA. Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron Artery Dis. 1997;8(10):623–31.

    Article  CAS  PubMed  Google Scholar 

  11. Kent KC, Zwolak RM, Egorova NN, Riles TS, Manganaro A, Moskowitz AJ, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg. 2010;52(3):539–48.

    Article  PubMed  Google Scholar 

  12. Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan Jr WD, Blebea J, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287(22):2968–72.

    Article  PubMed  Google Scholar 

  13. Participants ET. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet. 2005;365(9478):2187–92.

    Article  Google Scholar 

  14. Parkinson F, Ferguson S, Lewis P, Williams IM, Twine CP, South East Wales Vascular N. Rupture rates of untreated large abdominal aortic aneurysms in patients unfit for elective repair. J Vasc Surg. 2015;61(6):1606–12.

    Article  PubMed  Google Scholar 

  15. Chaikof EL, Brewster DC, Dalman RL, Makaroun MS, Illig KA, Sicard GA, et al. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J Vasc Surg. 2009;50(4 Suppl):S2–49.

    Article  PubMed  Google Scholar 

  16. Thompson AR, Cooper JA, Ashton HA, Hafez H. Growth rates of small abdominal aortic aneurysms correlate with clinical events. Br J Surg. 2010;97(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  17. Darling RC. Ruptured arteriosclerotic abdominal aortic aneurysms. A pathologic and clinical study. Am J Surg. 1970;119(4):397–401.

    Article  CAS  PubMed  Google Scholar 

  18. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest. 1998;102(7):1413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hurks R, Pasterkamp G, Vink A, Hoefer IE, Bots ML, van de Pavoordt HD, et al. Circumferential heterogeneity in the abdominal aortic aneurysm wall composition suggests lateral sides to be more rupture prone. J Vasc Surg. 2012;55(1):203–9.

    Article  PubMed  Google Scholar 

  20. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002;110(5):625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petersen E, Wagberg F, Angquist KA. Proteolysis of the abdominal aortic aneurysm wall and the association with rupture. Eur J Vasc Endovasc Surg. 2002;23(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  22. Wilson WR, Anderton M, Choke EC, Dawson J, Loftus IM, Thompson MM. Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2008;35(5):580–4.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR, et al. Matrix metalloproteinase-8 and -9 are increased at the site of abdominal aortic aneurysm rupture. Circulation. 2006;113(3):438–45.

    Article  CAS  PubMed  Google Scholar 

  24. Chistiakov DA, Sobenin IA, Orekhov AN. Vascular extracellular matrix in atherosclerosis. Cardiol Rev. 2013;21(6):270–88.

    Article  PubMed  Google Scholar 

  25. Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  26. Khan JA, Abdul Rahman MN, Mazari FA, Shahin Y, Smith G, Madden L, et al. Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms. Ann Vasc Surg. 2012;26(3):322–9.

    Article  PubMed  Google Scholar 

  27. Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Muller-Newen G, et al. Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem. 2007;388(11):1227–34.

    Article  CAS  PubMed  Google Scholar 

  28. English SJ, Piert MR, Diaz JA, Gordon D, Ghosh A, D’Alecy LG, et al. Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg. 2015;261(2):395–404.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reilly JM. Plasminogen activators in abdominal aortic aneurysmal disease. Ann N Y Acad Sci. 1996;800:151–6.

    Article  CAS  PubMed  Google Scholar 

  30. Lee SR, Guo SZ, Scannevin RH, Magliaro BC, Rhodes KJ, Wang X, et al. Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neurosci Lett. 2007;417(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  31. Lindholt JS. Activators of plasminogen and the progression of small abdominal aortic aneurysms. Ann N Y Acad Sci. 2006;1085:139–50.

    Article  CAS  PubMed  Google Scholar 

  32. Skagius E, Siegbahn A, Bergqvist D, Henriksson AE. Fibrinolysis in patients with an abdominal aortic aneurysm with special emphasis on rupture and shock. J Thromb Haemost. 2008;6(1):147–50.

    CAS  PubMed  Google Scholar 

  33. Hobbs SD, Haggart P, Fegan C, Bradbury AW, Adam DJ. The role of tissue factor in patients undergoing open repair of ruptured and nonruptured abdominal aortic aneurysms. J Vasc Surg. 2007;46(4):682–6.

    Article  PubMed  Google Scholar 

  34. Ang LS, Boivin WA, Williams SJ, Zhao H, Abraham T, Carmine-Simmen K, et al. Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm. Cell Death Dis. 2011;2:e209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uchida HA, Poduri A, Subramanian V, Cassis LA, Daugherty A. Urokinase-type plasminogen activator deficiency in bone marrow-derived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2011;31(12):2845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Tang C, Qin Y. Cathepsins: a new culprit behind abdominal aortic aneurysm. Regen Med Res. 2013;1(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lohoefer F, Reeps C, Lipp C, Rudelius M, Haertl F, Matevossian E, et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Exp Mol Med. 2014;46:e95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lv BJ, Lindholt JS, Wang J, Cheng X, Shi GP. Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms: a randomized population-based study. Atherosclerosis. 2013;230(1):100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jadhav PK, Schiffler MA, Gavardinas K, Kim EJ, Matthews DP, Staszak MA, et al. Discovery of Cathepsin S Inhibitor LY3000328 for the Treatment of Abdominal Aortic Aneurysm. ACS Med Chem Lett. 2014;5(10):1138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Sukhova GK, Liu J, Ozaki K, Lesner A, Libby P, et al. Cathepsin G deficiency reduces periaortic calcium chloride injury-induced abdominal aortic aneurysms in mice. J Vasc Surg. 2014;62(6):1615–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meijer CA, Stijnen T, Wasser MN, Hamming JF, van Bockel JH, Lindeman JH, et al. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann Intern Med. 2013;159(12):815–23.

    Article  PubMed  Google Scholar 

  42. Sillesen H, Eldrup N, Hultgren R, Lindeman J, Bredahl K, Thompson M, et al. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm. Br J Surg. 2015;102(8):894–901.

    Article  CAS  PubMed  Google Scholar 

  43. Shen M, Lee J, Basu R, Sakamuri SS, Wang X, Fan D, et al. Divergent roles of matrix metalloproteinase 2 in pathogenesis of thoracic aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35(4):888–98.

    Article  CAS  PubMed  Google Scholar 

  44. Abdul-Hussien H, Hanemaaijer R, Kleemann R, Verhaaren BF, van Bockel JH, Lindeman JH. The pathophysiology of abdominal aortic aneurysm growth: corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms. J Vasc Surg. 2010;51(6):1479–87.

    Article  PubMed  Google Scholar 

  45. Newman KM, Jean-Claude J, Li H, Ramey WG, Tilson MD. Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation. 1994;90(5 Pt 2):II224–7.

    CAS  PubMed  Google Scholar 

  46. Johnston WF, Salmon M, Su G, Lu G, Stone ML, Zhao Y, et al. Genetic and pharmacologic disruption of interleukin-1 beta signaling inhibits experimental aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33(2):294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dawson J, Cockerill G, Choke E, Loftus I, Thompson MM. Aortic aneurysms as a source of circulating interleukin-6. Ann N Y Acad Sci. 2006;1085:320–3.

    Article  CAS  PubMed  Google Scholar 

  48. Jones KG, Brull DJ, Brown LC, Sian M, Greenhalgh RM, Humphries SE, et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation. 2001;103(18):2260–5.

    Article  CAS  PubMed  Google Scholar 

  49. Roumen RM, Hendriks T, van der Ven-Jongekrijg J, Nieuwenhuijzen GA, Sauerwein RW, van der Meer JW, et al. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993;218(6):769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wallinder J, Skagius E, Bergqvist D, Henriksson AE. Early inflammatory response in patients with ruptured abdominal aortic aneurysm. Vasc Endovascular Surg. 2010;44(1):32–5.

    Article  PubMed  Google Scholar 

  51. Cheuk BL, Cheng SW. Can local secretion of prostaglandin E2, thromboxane B2, and interleukin-6 play a role in ruptured abdominal aortic aneurysm? World J Surg. 2008;32(1):55–61.

    Article  PubMed  Google Scholar 

  52. Wilson WR, Wills J, Furness PN, Loftus IM, Thompson MM. Abdominal aortic aneurysm rupture is not associated with an up-regulation of inflammation within the aneurysm wall. Eur J Vasc Endovasc Surg. 2010;40(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  53. Cheuk BL, Cheng SW. Differential secretion of prostaglandin E(2), thromboxane A(2) and interleukin-6 in intact and ruptured abdominal aortic aneurysms. Int J Mol Med. 2007;20(3):391–5.

    CAS  PubMed  Google Scholar 

  54. Wang YX, Martin-McNulty B, Freay AD, Sukovich DA, Halks-Miller M, Li WW, et al. Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol. 2001;159(4):1455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng J, Koenig SN, Kuivaniemi HS, Garg V, Hans CP. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. J Am Heart Assoc. 2014;3(6):e001064.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGF beta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med. 2013;54(10):1740–7.

    Article  CAS  PubMed  Google Scholar 

  58. Stewart GJ. Neutrophils and deep venous thrombosis. Haemostasis. 1993;23 Suppl 1:127–40.

    PubMed  Google Scholar 

  59. Heiple JM, Ossowski L. Human neutrophil plasminogen activator is localized in specific granules and is translocated to the cell surface by exocytosis. J Exp Med. 1986;164(3):826–40.

    Article  CAS  PubMed  Google Scholar 

  60. Kurihara T, Shimizu-Hirota R, Shimoda M, Adachi T, Shimizu H, Weiss SJ, et al. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation. 2012;126(25):3070–80.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen JR, Keegan L, Sarfati I, Danna D, Ilardi C, Wise L. Neutrophil chemotaxis and neutrophil elastase in the aortic wall in patients with abdominal aortic aneurysms. J Invest Surg : Off J Acad Surg Res. 1991;4(4):423–30.

    Article  CAS  Google Scholar 

  62. Cron DC, Coleman DM, Sheetz KH, Englesbe MJ, Waits SA. Aneurysms in abdominal organ transplant recipients. J Vasc Surg. 2014;59(3):594–8.

    Article  PubMed  Google Scholar 

  63. Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, et al. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg. 1998;15(4):290–9.

    Article  PubMed  Google Scholar 

  64. Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 2001;34(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  65. Stenbaek J, Kalin B, Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2000;20(5):466–9.

    Article  CAS  PubMed  Google Scholar 

  66. Speelman L, Schurink GW, Bosboom EM, Buth J, Breeuwer M, van de Vosse FN, et al. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg. 2010;51(1):19–26.

    Article  PubMed  Google Scholar 

  67. Folkesson M, Silveira A, Eriksson P, Swedenborg J. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis. 2011;218(2):294–9.

    Article  CAS  PubMed  Google Scholar 

  68. Choke E, Cockerill GW, Dawson J, Chung YL, Griffiths J, Wilson RW, et al. Hypoxia at the site of abdominal aortic aneurysm rupture is not associated with increased lactate. Ann N Y Acad Sci. 2006;1085:306–10.

    Article  CAS  PubMed  Google Scholar 

  69. Scott DJ, Prasad P, Philippou H, Rashid ST, Sohrabi S, Whalley D, et al. Clot architecture is altered in abdominal aortic aneurysms and correlates with aneurysm size. Arterioscler Thromb Vasc Biol. 2011;31(12):3004–10.

    Article  CAS  PubMed  Google Scholar 

  70. Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41(4):584–8.

    Article  PubMed  Google Scholar 

  71. Golledge J, Iyer V, Jenkins J, Bradshaw B, Cronin O, Walker PJ. Thrombus volume is similar in patients with ruptured and intact abdominal aortic aneurysms. J Vasc Surg. 2014;59(2):315–20.

    Article  PubMed  Google Scholar 

  72. Assar AN, Zarins CK. Ruptured abdominal aortic aneurysm: a surgical emergency with many clinical presentations. Postgrad Med J. 2009;85(1003):268–73.

    Article  CAS  PubMed  Google Scholar 

  73. Tong J, Cohnert T, Holzapfel GA. Diameter-related variations of geometrical, mechanical, and mass fraction data in the anterior portion of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2015;49(3):262–70.

    Article  CAS  PubMed  Google Scholar 

  74. Vallabhaneni SR, Gilling-Smith GL, How TV, Carter SD, Brennan JA, Harris PL. Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J Endovasc Ther : Off J Int Soc Endovasc Speci. 2004;11(4):494–502.

    Article  Google Scholar 

  75. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 2003;37(4):724–32.

    Article  PubMed  Google Scholar 

  76. Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 1998;27(4):632–9.

    Article  CAS  PubMed  Google Scholar 

  77. Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br J Surg. 2014;101(11):1350–7; discussion 7.

    Article  CAS  PubMed  Google Scholar 

  78. Boyd AJ, Kuhn DC, Lozowy RJ, Kulbisky GP. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. J Vasc Surg. 2016;63(6):1613–9.

    Google Scholar 

  79. Koncar I, Davidovic L. Rupture of abdominal aortic aneurysm in the low wall stress zone. Eur J Vasc Endovasc Surg. 2015;49(3):254.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Joannic D, Delassus P, Lalande A, Juillion P, Fontaine JF. Comparison of the strain field of abdominal aortic aneurysm measured by magnetic resonance imaging and stereovision: a feasibility study for prediction of the risk of rupture of aortic abdominal aneurysm. J Biomech. 2015;48(6):1158–64.

    Article  PubMed  Google Scholar 

  81. Riveros F, Martufi G, Gasser TC, Rodriguez-Matas JF. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann Biomed Eng. 2015;43(9):2253–64.

    Article  PubMed  Google Scholar 

  82. McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler Thromb Vasc Biol. 2010;30(9):1687–94.

    Article  CAS  PubMed  Google Scholar 

  83. Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg. 2010;51(3):679–88.

    Article  PubMed  Google Scholar 

  84. United Kingdom ETI, Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, et al. Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med. 2010;362(20):1863–71.

    Article  Google Scholar 

  85. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005;11(12):1330–8.

    Article  CAS  PubMed  Google Scholar 

  86. Stather PW, Sidloff DA, Rhema IA, Choke E, Bown MJ, Sayers RD. A review of current reporting of abdominal aortic aneurysm mortality and prevalence in the literature. Eur J Vasc Endovasc Surg. 2014;47(3):240–2.

    Article  CAS  PubMed  Google Scholar 

  87. Lederle FA. The rise and fall of abdominal aortic aneurysm. Circulation. 2011;124(10):1097–9.

    Article  PubMed  Google Scholar 

  88. Wang S, Zhang C, Zhang M, Liang B, Zhu H, Lee J, et al. Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med. 2012;18(6):902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sidloff D, Stather P, Dattani N, Bown M, Thompson J, Sayers R, et al. Aneurysm global epidemiology study: public health measures can further reduce abdominal aortic aneurysm mortality. Circulation. 2014;129(7):747–53.

    Article  PubMed  Google Scholar 

  90. Sampson UK, Norman PE, Fowkes FG, Aboyans V, Song Y, Harrell Jr FE, et al. Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010. Glob Heart. 2014;9(1):159–70.

    Article  PubMed  Google Scholar 

  91. Tedesco MM, Dalman RL. Arterial aneurysms, Rutherford’s vascular surgery. Saunders Elsevier: London. 7th ed. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujimura, N., Dalman, R.L. (2017). Pathogenesis of AAA Rupture. In: Starnes, B., Mehta, M., Veith, F. (eds) Ruptured Abdominal Aortic Aneurysm. Springer, Cham. https://doi.org/10.1007/978-3-319-23844-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23844-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23843-2

  • Online ISBN: 978-3-319-23844-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics