Skip to main content

A Systematic Approach to Design of Experiments in Waterjet Machining of High Performance Ceramics

  • Chapter
  • First Online:
Design of Experiments in Production Engineering

Abstract

The main objective of this chapter is to highlight the strategic role that a systematic and sequential approach of experimentation plays in order to achieve competitive advantage and technological innovation. The efficacy of this approach is demonstrated by describing an application where the appropriate use of statistical knowledge, along with technological knowledge, has allowed to characterize manufacturing processes, to catalyze the innovation process and to promote the technological transfer. Moreover this approach, based on the use of customized pre-design guide sheets, allows to put into action a virtuous cycle of sequential learning and helps to overcome the gap between practitioners and statisticians in effective application of Design of Experiments (DoE) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czitrom V (1999) One factor at a time versus designed experiments. Am Statist 53(2):126–131

    Google Scholar 

  2. Fisher RA (1971) The design of experiments, 9th edn. MacMillan, New York. ISBN 0-02-844690-9

    Google Scholar 

  3. Wu CFJ, Hamada M (2000) Experiments. Wiley/Interscience, New York

    MATH  Google Scholar 

  4. Montgomery DC (2005) Design and analysis of experiments. Wiley, New York

    MATH  Google Scholar 

  5. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters—design, innovation and discovery, 2nd edn., Wiley series in probability and statisticsWiley, New York

    MATH  Google Scholar 

  6. Ilzarbe L, Álvarez MJ, Viles E, Tanco M (2008) Practical applications of design of experiments in the field of engineering: a bibliographical review. Qual Reliab Eng Int 24:417–428

    Article  Google Scholar 

  7. Tanco M, Viles E, Álvarez MJ, Ilzarbe L (2010) Why is not design of experiments widely used by engineers in Europe? J Appl Stat 37(12):1961–1977

    Article  MathSciNet  Google Scholar 

  8. Costa NRP, Pires AR, Ribeiro CO (2006) Guidelines to help practitioners of design of experiments. TQM Mag 18(4):386–399

    Article  Google Scholar 

  9. Montgomery DC (1999) Experimental design for product and process design and development. The Stat. 48(2):159–177

    Google Scholar 

  10. Coleman DE, Montgomery DC (1993) A systematic approach to planning for a designed industrial experiment. Techometrics 35(1):1–12

    Article  Google Scholar 

  11. Palumbo B, De Chiara G, Marrone R (2008) Innovation via engineering and statistical knowledge integration. In: Erto P (ed) Statistics for innovation, statistical design of continuous product innovation. Springer, Berlin, pp 177–190

    Google Scholar 

  12. De Chiara G, Marrone R, Palumbo B, Tagliaferri F (2011) A systematic approach to process improvement via design of experiments: a case study in tack-welding process. In: Proceedings of 10th A.I.Te.M. conference “enhancing the science of manufacturing”, Naples, 12–14 Sep 2011, p. 12

    Google Scholar 

  13. Dittrich M, Dix M, Kuhl M, Palumbo B, Tagliaferri F (2014) Process analysis of water abrasive fine jet structuring of ceramic surfaces via design of experiment. In: Procedia CIRP, 6th CIRP international conference on high performance cutting (CIRP HPC2014), vol 14, pp 442–447

    Google Scholar 

  14. Hahn GJ (1984) Experimental design in the complex world. Technometrics 26(1):19–31

    Article  Google Scholar 

  15. Brecher C, Emonts M, Rosen CJ, Hermani JP (2011) Laser-assisted milling of advanced materials. Phys Proc 12:599–606

    Article  Google Scholar 

  16. Awiszus B (2012) Grundlagen Der Fertigungstechnik, 5., aktualisierte Aufl. Leipzig: Fachbuchverl. Leipzig im Hanser-Verlag, pp 192–200

    Google Scholar 

  17. Shukla M (2013) Abrasive water jet milling. In: Davim JP (ed) Nontraditional machining processes: research advances. Springer, London pp 177–204

    Google Scholar 

  18. Neugebauer R (2012) Werkzeugmaschinen. Aufbau, Funktion und Anwendung von spanenden und abtragenden Werkzeugmaschinen. Springer Vieweg (VDI-Buch), Berlin [u.a.], pp 241–251

    Google Scholar 

  19. John Rozario Jegaraj J, Ramesh Babu N (2005) A strategy for efficient and quality cutting of materials with abrasive waterjets considering the variation in orifice and focusing nozzle diameter. Int J Mach Tools Manuf 45:1443–1450

    Article  Google Scholar 

  20. Westkämper E, Warnecke HJ (2002) Einführung in die Fertigungstechnik. Mit 9 Tabellen. 5. überarb. und aktualisierte Aufl. Stuttgart, Leipzig, Wiesbaden: Teubner (Teubner-Studienbücher: Technik), pp 152–154

    Google Scholar 

  21. Hashish M (1991) Optimization factors in abrasive-waterjet machining. ASME J Eng Ind 113:29–37

    Google Scholar 

  22. Singh PJ, Chen W, Munoz J (1991) Comprehensive evaluation of abrasive waterjet cut surface quality. In: Proceedings of sixth American waterjet conference, Houston, pp 139–161

    Google Scholar 

  23. Momber AW, Kovacevic R (1998) Principles of abrasive waterjet machining. Springer, London

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been developed within the research line “Statistics, QUAlity and REliability” (SQUARE) of the Joint Laboratory “Interactive DEsign And Simulation” (IDEAS) between the University of Naples Federico II (Italy) and the Fraunhofer Institute for Machine Tools and Forming Technology IWU of Chemnitz (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flaviana Tagliaferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tagliaferri, F., Dittrich, M., Palumbo, B. (2016). A Systematic Approach to Design of Experiments in Waterjet Machining of High Performance Ceramics. In: Davim, J. (eds) Design of Experiments in Production Engineering. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23838-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23838-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23837-1

  • Online ISBN: 978-3-319-23838-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics