Skip to main content

Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing

  • Chapter
  • First Online:
Design of Experiments in Production Engineering

Abstract

This book chapter pertains to the use of statistical methods and soft computing techniques that can be used in the modelling and optimization of machining processes. More specifically, the factorial design method , Taguchi method , response surface methodology (RSM), analysis of variance , grey relational analysis (GRA) , statistical regression methods , artificial neural networks (ANN) , fuzzy logic and genetic algorithms are thoroughly examined. As part of the design of experiments (DOE) the aforementioned methods and techniques have proven to be very powerful and reliable tools. Especially in machining, a plethora of works have already been published indicating the importance of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao RV (2011) Advanced modeling and optimization of manufacturing processes. Springer, London

    Book  Google Scholar 

  2. Fisher RA (1926) The arrangement of field experiments. J Minist Agric G B 33:503–513

    Google Scholar 

  3. Fisher RA (1935) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  4. Montgomery DC (2012) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  5. Fang K-T, Qin H (2003) A note on construction of nearly uniform designs with large number of runs. Stat Probab Lett 61:215–224

    Article  MathSciNet  MATH  Google Scholar 

  6. Qin H, Chen Y-B (2004) Some results on generalized minimum aberration for symmetrical fractional factorial designs. Stat Probab Lett 66:51–57

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatterjee K, Fang K-T, Qin H (2005) Uniformity in factorial designs with mixed level. J Stat Plann Infer 128:593–607

    Article  MathSciNet  MATH  Google Scholar 

  8. Qin H, Li D (2006) Connection between uniformity and orthogonality for symmetrical factorial designs. J Stat Plann Infer 136:2770–2782

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong Q, Shangli Z, Kaitai F (2006) Construction uniform designs with two- or three-level. Acta Math Sci 26B(3):451–459

    MATH  Google Scholar 

  10. Tsao H-SJ, Patel MH (2013) An intuitive design pattern for sequentially estimating parameters of a 2k factorial experiment with active confounding avoidance and least treatment combinations. Comput Ind Eng 66:601–613

    Article  Google Scholar 

  11. Suen C-Y, Das A, Midha CK (2013) Optimal fractional factorial designs and their construction. J Stat Plann Infer 143:1828–1834

    Article  MathSciNet  MATH  Google Scholar 

  12. Tsao H-SJ, Patel MH (2015) A general intuitive design pattern for optimally sequencing treatment combinations in 2k factorial experiment and a simple estimation algorithm. Comput Ind Eng 85:423–436

    Article  Google Scholar 

  13. Levi R (1965) Evaluation of machining conditions by factorial experiment. Int J Mach Tool Des Res 5:217–221

    Article  Google Scholar 

  14. Sahin Y, Motorcu AR (2005) Surface roughness model for machining mild steel with coated carbide tool. Mater Des 26:321–326

    Article  Google Scholar 

  15. Park SJ, Kim DH, Lee CM (2012) A study determining the optimal machining conditions for a 40,000 rpm ultrahigh speed spindle system. Precis Eng 36:451–457

    Article  Google Scholar 

  16. Mandal N, Doloi B, Mondal B (2013) Predictive modelling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. Int J Refract Metal Hard Mater 38:40–46

    Article  Google Scholar 

  17. Venkatesan K, Ramanujam R, Joel J, Jeyapandiarajan P, Vignesh M, Tolia DJ, Krishna RV (2014) Study of cutting force and surface roughness in machining of Al alloy hybrid composite and optimized using response surface methodology. Procedia Eng 97:677–686

    Article  Google Scholar 

  18. Qehaja N, Jakupi K, Bunjaku A, Bruçi M, Osmani H (2015) Effect of machining parameters and machining time on surface roughness in dry turning process. Procedia Eng 100:135–140

    Article  Google Scholar 

  19. Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tools Manuf 39:1327–1344

    Article  Google Scholar 

  20. Yang Y-K, Chuang M-T, Lin S-S (2009) Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J Mater Process Technol 209:4395–4400

    Article  Google Scholar 

  21. Nithyanandam GK, Pezhinkattil R (2014) A Six Sigma approach for precision machining in milling. Procedia Eng 9:1474–1488

    Article  Google Scholar 

  22. Rajmohan T, Palanikumar K (2013) Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46:1470–1481

    Article  Google Scholar 

  23. Tagliaferri F, Leonardi G, Semmler U, Kuhl M, Palumbo B (2013) Study of the influences of laser parameters on laser assisted machining processes. Procedia CIRP 8:170–175

    Article  Google Scholar 

  24. Assarzadeh S, Ghoreishi M (2013) Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6 %Co). Procedia CIRP 6:463–468

    Article  Google Scholar 

  25. Shabgarf MA, Badamchizadeh MA, Ranjbary G, Amini K (2013) Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J Manuf Syst 32:32–39

    Article  Google Scholar 

  26. Muthukumar V, Rajesh N, Venkatasamy R, Sureshbabu A, Senthilkumar N (2014) Mathematical modeling for radial overcut on electrical discharge machining of Incoloy 800 by response surface methodology. Procedia Mater Sci 6:1674–1682

    Article  Google Scholar 

  27. Bhosale SB, Pawade RS, Brahmankar PK (2014) Effect of process parameters on MRR, TWR and surface topography in ultrasonic machining of alumina-zirconia ceramic composite. Ceram Int 40:12831–12836

    Article  Google Scholar 

  28. Çaydaş U, Hasçalik A (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J Mater Process Technol 202:574–582

    Article  Google Scholar 

  29. Sahin Y (2009) Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. J Mater Process Technol 209:3478–3489

    Article  Google Scholar 

  30. Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44:1697–1704

    Google Scholar 

  31. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19:2049–2056

    Article  Google Scholar 

  32. Asiktürk I, Neşeli S (2012) Multi-response optimization of CNC turning parameters via Taguchi method-based response surface analysis. Measurement 45:785–794

    Article  Google Scholar 

  33. Abhang LB, Hameedullah M (2012) Optimization of machining parameters in steel turning operation by Taguchi method. Procedia Eng 38:40–48

    Article  Google Scholar 

  34. Camposeco-Negrete C (2013) Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod 53:195–203

    Article  Google Scholar 

  35. Günay M, Yücel E (2013) Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron. Measurement 46:913–919

    Article  Google Scholar 

  36. Singarvel B, Selvaraj T, Jeyapaul R (2014) Multi objective optimization in turning of EN25 steel using Taguchi based utility concept coupled with principal component analysis. Procedia Eng 97:158–165

    Article  Google Scholar 

  37. Sarıkaya M, Güllü A (2014) Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. J Clean Prod 65:604–616

    Article  Google Scholar 

  38. Khanna N, Davim JP (2015) Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement 61:280–290

    Article  Google Scholar 

  39. Kant G, Sangwan KS (2015) Predictive modeling for power consumption in machining using artificial intelligence techniques. Procedia CIRP 26:403–407

    Article  Google Scholar 

  40. Shahrom MS, Yahya NM, Yusoff AR (2013) Taguchi method approach on effect of lubrication condition on surface roughness in milling operation. Procedia Eng 53:594–599

    Article  Google Scholar 

  41. Sreenivasulu R (2013) Optimization of surface roughness and delamination damage of GFRP composite material in end milling using Taguchi design method and artificial neural network. Procedia Eng 64:785–794

    Article  Google Scholar 

  42. Pang JS, Ansari MNM, Zaroog OS, Ali MH, Sapuan SM (2014) Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC J 10:138–144

    Article  Google Scholar 

  43. Davim JP (2003) Study of drilling metal-matrix composites based on the Taguchi techniques. J Mater Process Technol 132:250–254

    Article  Google Scholar 

  44. Siddiquee AN, Khan ZA, Goel P, Kumar M, Agarwal G, Khan NZ (2014) Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method. Procedia Mater Sci 6:1217–1225

    Article  Google Scholar 

  45. Wang CC, Yan BH (2000) Blind-hole drilling of Al2O3/6061 Al composite using rotary electro-discharge machining. J Mater Process Technol 102:90–102

    Article  Google Scholar 

  46. Tzeng Y-F, Chen F-C (2003) A simple approach for robust design of high-speed electrical-discharge machining technology. Int J Mach Tools Manuf 43:217–227

    Article  Google Scholar 

  47. George PM, Raghunath BK, Manocha LM, Warrier AM (2004) EDM machining of carbon-carbon composite—a Taguchi approach. J Mater Process Technol 145:66–71

    Article  Google Scholar 

  48. Lin Y-C, Chen Y-F, Wang D-A, Lee H-S (2009) Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. J Mater Process Technol 209:3374–3383

    Article  Google Scholar 

  49. Prabhu S, Vinayagam BK (2011) AFM investigation of Inconel 825 with multi wall carbon nano tube in electrical discharge machining process using Taguchi analysis. Arch Civ Mech Eng XI 1:149–170

    Article  Google Scholar 

  50. Durairaj M, Sudharsun D, Swamynathan N (2013) Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Eng 64:868–877

    Article  Google Scholar 

  51. Sudhakara D, Prasanthi G (2014) Application of Taguchi method for determining optimum surface roughness in wire electric discharge machining of P/M cold worked tool steel (Vanadis-4E). Procedia Eng 97:1565–1576

    Article  Google Scholar 

  52. Lodhi BK, Agarwal S (2014) Optimization of machining parameters in WEDM of AISI D3 steel using Taguchi technique. Procedia CIRP 14:194–199

    Article  Google Scholar 

  53. Goswami A, Kumar J (2014) Optimization in wire-cut EDM of Nimonic-80A using Taguchi’s approach and utility concept. Eng Sci Technol Int J 17:236–246

    Article  Google Scholar 

  54. Chang C-W, Kuo C-P (2007) Evaluation of surface roughness in laser-assisted machining of aluminium oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47:141–147

    Article  Google Scholar 

  55. Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of Inconel 718 using Taguchi method. Procedia Eng 97:1637–1646

    Article  Google Scholar 

  56. Tsai FC, Yan BH, Kuan CY, Huang FY (2008) A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel. Int J Mach Tools Manuf 48:932–945

    Article  Google Scholar 

  57. Singh R, Khamba JS (2007) Taguchi technique for modeling material removal rate in ultrasonic machining of titanium. Mater Sci Eng A 460–461:365–369

    Article  Google Scholar 

  58. Yünlü L, Çolak O, Kurbanoğlu C (2014) Taguchi DOE analysis of surface integrity for high pressure jet assisted machining of Inconel 718. Procedia CIRP 13:333–338

    Article  Google Scholar 

  59. Mian AJ, Driver N, Mativenga PT (2011) Identification of factors that dominate size effect in micro-machining. Int J Mach Tools Manuf 51:383–394

    Article  Google Scholar 

  60. El Baradie MA (1991) Computer aided analysis of a surface roughness model for turning. J Mater Process Technol 26:207–216

    Article  Google Scholar 

  61. Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A (2004) Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol 145:46–58

    Article  Google Scholar 

  62. Öktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16

    Article  Google Scholar 

  63. Horng J-T, Liu N-M, Chiang K-T (2008) Investigating the machinability evaluation of hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology. J Mater Process Technol 208:532–541

    Article  Google Scholar 

  64. Neşeli S, Yaldız S, Türkes E (2011) Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement 44:580–587

    Article  Google Scholar 

  65. Mandal N, Doloi B, Mondal B (2011) Development of flank wear prediction model of zirconia toughened alumina (ZTA) cutting tool using response surface methodology. Int J Refract Metal Hard Mater 29:273–280

    Article  Google Scholar 

  66. Suresh R, Basavarajappa S, Samuel GL (2012) Predictive modeling of cutting forces and tool wear in hard turning using response surface methodology. Procedia Eng 38:73–81

    Article  Google Scholar 

  67. Makadia AJ, Nanavati JI (2013) Optimization of machining parameters for turning operations based on response surface methodology. Measurement 46:1521–1529

    Article  Google Scholar 

  68. Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65:166–180

    Article  Google Scholar 

  69. Dambhare S, Deshmukh S, Borade A, Digalwar A, Phate M (2015) Sustainability issues in turning process: a study in Indian machining industry. Procedia CIRP 26:379–384

    Article  Google Scholar 

  70. Camposeco-Negrete C (2015) Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J Clean Prod 91:109–117

    Article  Google Scholar 

  71. Alauddin M, El Baradie MA, Hashmi MSJ (1997) Prediction of tool life in end milling by response surface methodology. J Mater Process Technol 71:456–465

    Article  Google Scholar 

  72. Wang M-Y, Chang H-Y (2004) Experimental study of surface roughness in slot end milling Al2014-T6. Int J Mach Tools Manuf 44:51–57

    Article  Google Scholar 

  73. Arunpremnath A, Alwarsamy T, Abhinav T, Krishnakant CA (2012) Surface roughness prediction by response surface methodology in milling of hybrid aluminium composites. Procedia Eng 38:745–752

    Article  Google Scholar 

  74. Subramanian M, Sakthivel M, Sooryaprakash K, Sudharakan R (2013) Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement 46:4005–4022

    Article  Google Scholar 

  75. Subramanian M, Sakthivel M, Sooryaprakash K, Sudhakaran R (2013) Optimization of cutting parameters for cutting force in shoulder milling of Al7076-T6 using response surface methodology and genetic algorithm. Procedia Eng 64:690–700

    Article  Google Scholar 

  76. Dikshit MK, Puri AB, Maity A (2014) Experimental study of cutting forces in ball end milling of Al2014-T6 using response surface methodology. Procedia Mater Sci 6:612–622

    Article  Google Scholar 

  77. Durakbasa MN, Akdogan A, Vanli AS, Bulutsuz AG (2015) Optimization of end milling parameters and determination of the effects of edge profile for high surface quality of AISI H13 steel by using precise and fast measurements. Measurement 68:92–99

    Article  Google Scholar 

  78. Kansal HS, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169:427–436

    Article  Google Scholar 

  79. Habib SS (2009) Study of the parameters in electrical discharge machining through response surface methodology approach. Appl Math Model 33:4397–4407

    Article  MATH  Google Scholar 

  80. Shandilya P, Jain PK, Jain NK (2012) Parametric optimization during wire electrical discharge machining using response surface methodology. Procedia Eng 38:2371–2377

    Article  Google Scholar 

  81. Rajesh R, Anand MD (2012) The optimization of the electro-discharge machining process using response surface methodology and genetic algorithms. Procedia Eng 38:3941–3950

    Article  Google Scholar 

  82. Mohanty CP, Sahu J, Mahapatra SS (2013) Thermal-structural analysis of electrical discharge machining process. Procedia Eng 51:508–513

    Article  Google Scholar 

  83. Sahu J, Mohanty CP, Mahapatra SS (2013) A DEA approach for optimization of multiple responses in electrical discharge machining of AISI D2 steel. Procedia Eng 51:585–591

    Article  Google Scholar 

  84. Singh V, Pradhan SK (2014) Optimization of WEDM parameters using Taguchi technique and response surface methodology in machining of AISI D2 steel. Procedia Eng 97:1597–1608

    Article  Google Scholar 

  85. Liu D, Huang C, Wang J, Zhu H, Yao P, Liu ZW (2014) Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram Int 40:7899–7908

    Article  Google Scholar 

  86. Sankar M, Gnanavelbabu A, Rajkumar K (2014) Effect of reinforcement particles on the abrasive assisted electrochemical machining of aluminium-boron carbide-graphite composite. Procedia Eng 97:381–389

    Article  Google Scholar 

  87. Xu K, Zeng Y, Li P, Zhu D (2015) Study of surface roughness in wire electrochemical micro machining. J Mater Process Technol 222:103–109

    Article  Google Scholar 

  88. Pandey PM, Reddy NV, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 13:323–331

    Article  Google Scholar 

  89. Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232

    Article  Google Scholar 

  90. Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254

    Article  Google Scholar 

  91. Varaprasad Bh, Srinivasa Rao Ch, Vinay PV (2014) Effect of machining parameters on tool wear in hard turning of AISI D3 steel. Procedia Eng 97:338–345

    Article  Google Scholar 

  92. Ramanujam R, Venkatesan K, Saxena V, Joseph P (2014) Modeling and optimization of cutting parameters in dry turning of Inconel 718 using coated carbide inserts. Procedia Mater Sci 5:2550–2559

    Article  Google Scholar 

  93. Tseng T-LB, Kwon YJ (2014) Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data. J Comput Des Eng 1(2):128–139

    Google Scholar 

  94. Slamani M, Gauthier S, Chatelain J-F (2015) A study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPs. Measurement 59:268–283

    Article  Google Scholar 

  95. Logins A, Torims T (2015) The influence of high-speed milling strategies on 3D surface roughness parameters. Procedia Eng 100:1253–1261

    Article  Google Scholar 

  96. Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Kumar MS, Zitoune R, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos B 43:1791–1799

    Article  Google Scholar 

  97. Singh PN, Raghukandan K, Rathinasabapthi M, Pai BC (2004) Electric discharge machining of Al-10 %SiCp as-cast metal matrix composites. J Mater Process Technol 155–156:1653–1657

    Article  Google Scholar 

  98. Tzeng Y-F, Chen F-C (2007) Multi-objective optimization of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. Mater Des 28:1159–1168

    Article  Google Scholar 

  99. Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49:297–308

    Article  Google Scholar 

  100. Chattopadhyay KD, Verma S, Satsangi PS, Sharma PC (2009) Development of empirical model for different process parameters during rotary electrical discharge machining of copper-steel (EN-8) system. J Mater Process Technol 209:1454–1465

    Article  Google Scholar 

  101. Courbon C, Kramar D, Krainik P, Pusavec F, Rech J, Kopac J (2009) Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study. Int J Mach Tools Manuf 49:1114–1125

    Article  Google Scholar 

  102. Kibria G, Doloi B, Bhattacharyya B (2013) Experimental investigation and multi-objective optimization of Nd: YAG laser micro-turning process of alumina ceramic using orthogonal array and grey relational analysis. Opt Laser Technol 48:16–27

    Article  Google Scholar 

  103. Dittrich M, Dix M, Kuhl M, Palumbo B, Tagliaferri F (2014) Process analysis of water abrasive fine jet structuring of ceramic surfaces via design of experiment. Procedia CIRP 14:442–447

    Article  Google Scholar 

  104. Chan JWK, Tong TKL (2007) Multi-criteria material selections and end-of-life product strategy: grey relational analysis approach. Mater Des 28:1539–1546

    Article  Google Scholar 

  105. Pan LK, Wang CC, Wei SL, Sher HF (2007) Optimizing multiple quality characteristics via Taguchi method-based grey analysis. J Mater Process Technol 182:107–116

    Article  Google Scholar 

  106. Yin MS (2013) Fifteen years of grey system theory research: a historical review and bibliometric analysis. Expert Syst Appl 40:2767–2775

    Article  Google Scholar 

  107. Arce ME, Saavedra A, Miguez JL, Granada E (2015) The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: a review. Renew Sustain Energy Rev 47:924–932

    Article  Google Scholar 

  108. Horng J-T, Chiang K-T (2008) A grey and fuzzy algorithms integrated approach to the optimization of turning Hadfield steel with Al2O3/TiC mixed ceramic tool. J Mater Process Technol 207:89–97

    Article  Google Scholar 

  109. Sahoo AK, Sahoo B (2013) Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: part II (RSM, grey relational and techno economical approach). Measurement 46:2868–2884

    Article  Google Scholar 

  110. Dabade UA (2013) Multi-objective process optimization to improve surface integrity on turned surface of Al/SiCp metal matrix composites using grey relational analysis. Procedia CIRP 7:299–304

    Article  Google Scholar 

  111. Mukherjee S, Kamal A, Kumar K (2014) Optimization of material removal rate during turning of SAE 1020 material in CNC lathe using Taguchi technique. Procedia Eng 97:29–35

    Article  Google Scholar 

  112. Vinayagamoorthy R, Xavior MA (2014) Parametric optimization on multi-objective precision turning using grey relational analysis. Procedia Eng 97:299–307

    Article  Google Scholar 

  113. Nayak SK, Patro JK, Dewangan S, Gangopadhyay S (2014) Multi-objective optimization of machining parameters during dry turning of AISI 304 austenitic stainless steel using grey relational analysis. Procedia Mater Sci 6:701–708

    Article  Google Scholar 

  114. Ganta V, Chankradhar D (2014) Multi objective optimization of hot machining of 15-5PH stainless steel using grey relation analysis. Procedia Mater Sci 5:1810–1818

    Article  Google Scholar 

  115. Lu HS, Chang CK, Hwang NC, Chung CT (2009) Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J Mater Process Technol 209:3808–3817

    Article  Google Scholar 

  116. Yan J, Li L (2013) Multi-objective optimization of milling parameters—the trade-offs between energy production rate and cutting density. J Clean Prod 52:462–471

    Article  Google Scholar 

  117. Maiyar LM, Ramanujam R, Venkatesan K, Jerald J (2013) Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi-based grey relational analysis. Procedia Eng 64:1276–1282

    Article  Google Scholar 

  118. Nair A, Govindan P, Ganesan H (2014) A comparison between different optimization techniques for CNC end milling process. Procedia Eng 97:36–46

    Article  Google Scholar 

  119. Rajmohan T, Palanikumar K, Kathirvel M (2012) Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans Nonferrous Met Soc China 22:1286–1297

    Article  Google Scholar 

  120. Taşkesen A, Kütükde K (2013) Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement 47:321–330

    Article  Google Scholar 

  121. Rajmohan T, Palanikumar K, Prakash S (2013) Grey-fuzzy algorithm to optimize machining parameters in drilling of hybrid metal matrix composites. Compos B 50:297–308

    Article  Google Scholar 

  122. Pandey RK, Panda SS (2014) Optimization of bone drilling parameters using grey-based fuzzy algorithm. Measurement 47:386–392

    Article  Google Scholar 

  123. Prasanna J, Karunamoorthy L, Raman MV, Prashanth S, Chordia DR (2014) Optimization of process parameters of small hole dry drilling in Ti-6Al-4V using Taguchi and grey relational analysis. Measurement 48:346–354

    Article  Google Scholar 

  124. Singh PN, Raghukandan K, Pai BC (2004) Optimization by grey relational analysis of EDM parameters on machining Al-10 %SiCp composites. J Mater Process Technol 155–156:1658–1661

    Article  Google Scholar 

  125. Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180:96–101

    Article  Google Scholar 

  126. Lin MY, Tsao CC, Hsu CY, Chiou AH, Huang PC, Lin YC (2013) Optimization of micro milling electrical discharge machining of Inconel 718 by grey-Taguchi method. Trans Nonferrous Met Soc China 23:661–666

    Article  Google Scholar 

  127. Khan ZA, Siddiquee AN, Khan NZ, Khan U, Quadir GA (2014) Multi response optimization of Wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Procedia Mater Sci 6:1683–1695

    Article  Google Scholar 

  128. Talla G, Gangopadhyay S, Biswas CK (2014) Multi response optimization of powder mixed electric discharge machining of aluminum/alumina metal matrix composite using grey relation analysis. Procedia Mater Sci 5:1633–1639

    Article  Google Scholar 

  129. Mhatre MS, Sapkal SU, Pawade RS (2014) Electro discharge machining characteristics of Ti-6Al-4V alloy: a grey relational optimization. Procedia Mater Sci 5:2014–2022

    Article  Google Scholar 

  130. Saedon JB, Jaafar N, Yadaya MA, Saad NH, Kasim MS (2014) Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM. Procedia Technol 15:833–841

    Article  Google Scholar 

  131. Çaydaş U, Hasçalik A (2008) Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt Laser Technol 40:987–994

    Article  Google Scholar 

  132. Li C-H, Tsai M-J (2009) Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey relational analysis. Opt Laser Technol 41:634–642

    Article  Google Scholar 

  133. Rao R, Yadava V (2009) Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt Laser Technol 41:922–930

    Article  Google Scholar 

  134. Acherjee B, Prakash S, Kuar AS, Mitra S (2014) Grey relational analysis based optimization of underwater Nd: YAG laser micro-channeling on PMMA. Procedia Eng 97:1406–1415

    Article  Google Scholar 

  135. Das MK, Kumar K, Barman TK, Sahoo P (2014) Optimization of surface roughness and MRR in electrochemical machining of EN31 tool steel using grey-Taguchi approach. Procedia Mater Sci 6:729–740

    Article  Google Scholar 

  136. Kao PS, Hocheng H (2003) Optimization of electrochemical polishing of stainless steel by grey relational analysis. J Mater Process Technol 140:255–259

    Article  Google Scholar 

  137. Mukherjee SN, Basu SK (1967) Multiple regression analysis in evaluation of tool wear. Int J Mach Tools Des Res 7:15–21

    Article  Google Scholar 

  138. Sokovic M, Bahor M (1998) On the inter-relationships of some machinability parameters in finish machining with cermet TiN (PVD) coated tools. J Mater Process Technol 78:163–170

    Article  Google Scholar 

  139. Tosun N, Özler L (2002) A study of tool life in hot machining using artificial neural networks and regression analysis method. J Mater Process Technol 124:99–104

    Article  Google Scholar 

  140. Lin JT, Bhattacharyya D, Kecman V (2003) Multiple regression and neural networks analyses in composites machining. Compos Sci Technol 63:539–548

    Article  Google Scholar 

  141. Asiltürk I, Çunkaş M (2011) Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 38:5826–5832

    Article  Google Scholar 

  142. Korkut I, Acir A, Boy M (2011) Application of regression and artificial neural network analysis in modelling of tool-chip interface temperature in machining. Expert Syst Appl 38:11651–11656

    Article  Google Scholar 

  143. Özel T, Karpat Y (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int J Mach Tools Manuf 45:467–479

    Article  Google Scholar 

  144. Leone C, D’Addona D, Teti R (2011) Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining. CIRP J Manuf Sci Technol 4:327–331

    Article  Google Scholar 

  145. Mandal N, Doloi B, Mondal B, Das R (2011) Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis. Measurement 44:2149–2155

    Article  Google Scholar 

  146. Chen B, Chen X, Li B, He Z, Cao H, Cai G (2011) Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech Syst Signal Process 25:2526–2537

    Article  Google Scholar 

  147. Sahoo AK, Baral AN, Rout AK, Routra BC (2012) Multi-objective optimization and predictive modeling of surface roughness and material removal rate in turning using grey relational and regression analysis. Procedia Eng 38:1606–1627

    Article  Google Scholar 

  148. Garcia-Plaza E, Nunez PJ, Salgado DR, Cambero I, Herreza Olivenza JM, Sanz-Calcedo JG (2013) Surface finish monitoring in taper turning CNC using artificial neural network and multiple regression methods. Procedia Eng 63:599–607

    Article  Google Scholar 

  149. Agrawal A, Goel S, Bin Rashid W, Price M (2015) Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl Soft Comput 30:279–286

    Article  Google Scholar 

  150. Ahmad MAF, Nuawi MZ, Abdullah S, Wahid Z, Karim Z, Dirhamsyah M (2015) Development of tool wear machining monitoring using novel statistical analysis method, I-kazTM. Procedia Eng 101:355–362

    Article  Google Scholar 

  151. Ciurana J, Quintana G, Garcia-Romeu ML (2008) Estimating the cost of vertical high-speed machining centres, a comparison between multiple regression analysis and the neural networks approach. Int J Prod Econ 115:171–178

    Article  Google Scholar 

  152. Chakraborty P, Asfour S, Cho S, Onar A, Lynn M (2008) Modeling tool wear progression by using mixed effects modeling technique when end-milling AISI 4340 steel. J Mater Process Technol 205:190–202

    Article  Google Scholar 

  153. Wibowo A, Desa MI (2012) Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process. Expert Syst Appl 39:11634–11641

    Article  Google Scholar 

  154. Zain AM, Haron H, Qasem SN, Sharif S (2012) Regression and ANN models for estimating minimum value of machining performance. Appl Math Model 36:1477–1492

    Article  MATH  Google Scholar 

  155. Rao KV, Murthy BSN, Rao NM (2013) Cutting tool condition monitoring by analyzing surface roughness, workpiece vibration and volume of metal removed for AISI 1040 steel in boring. Measurement 46:4075–4084

    Article  Google Scholar 

  156. Kanlayasiri K, Boonmung S (2007) Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model. J Mater Process Technol 192–193:459–464

    Article  Google Scholar 

  157. Obikawa T, Shinozuka J (2004) Monitoring of flank wear of coated tools in high speed machining with a neural network ART2. Int J Mach Tools Manuf 44:1311–1318

    Article  Google Scholar 

  158. Ezugnu EO, Fadare DA, Bonney J, Da Silva RB, Sales WF (2005) Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. Int J Mach Tools Manuf 45:1375–1385

    Article  Google Scholar 

  159. Davim JP, Gaitonde VN, Karnik SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205:16–23

    Article  Google Scholar 

  160. Umbrello D, Ambrogio G, Filice L, Shivpuri R (2008) A hybrid finite element method—artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Mater Des 29:873–883

    Article  Google Scholar 

  161. Kurt A (2009) Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks. Expert Syst Appl 36:9645–9657

    Article  Google Scholar 

  162. Tiryaki S, Malkoçoğlu S, Özşahin Ş (2014) Using artificial neural networks for modeling surface roughness of wood in machining process. Constr Build Mater 66:329–335

    Article  Google Scholar 

  163. Azmi AI (2015) Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv Eng Softw 82:53–64

    Article  Google Scholar 

  164. Zain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst Appl 37:1755–1768

    Article  Google Scholar 

  165. Kannan TDB, Kannan GR, Kumar BS, Baskar N (2014) Application of artificial neural network modeling for machining parameters optimization in drilling operation. Procedia Mater Sci 5:2242–2249

    Article  Google Scholar 

  166. Tsai K-M, Wang P-J (2001) Comparisons of neural network models on material removal rate in electrical discharge machining. J Mater Process Technol 117:111–124

    Article  Google Scholar 

  167. Markopoulos A, Vaxevanidis NM, Petropoulos G, Manolakos DE (2006) Artificial neural networks modeling of surface finish in electro-discharge machining of tool steels. In: Proceedings of ESDA 2006, 8th Biennial ASME conference on engineering systems design and analysis, Torino, Italy, pp 847–854

    Google Scholar 

  168. Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292

    Article  Google Scholar 

  169. Rao GKM, Rangajanardhaa G, Rao DH, Rao MS (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 209:1512–1520

    Article  Google Scholar 

  170. Chen H-C, Lin J-C, Yang Y-K, Tsai C-H (2010) Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl 37:7147–7153

    Article  Google Scholar 

  171. Khan MAR, Rahman MM, Kadirgama K (2014) Neural network modeling and analysis for surface characteristics in electrical discharge machining. Procedia Eng 90:631–636

    Article  Google Scholar 

  172. Benkirane Y, Kremer D, Moisan A (1999) Ultrasonic machining: an analytical and experimental study on contour machining based on neural network. Ann CIRP 48(1):135–138

    Article  Google Scholar 

  173. Jain RK, Jain VK, Kalra PK (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231:242–248

    Article  Google Scholar 

  174. Petri KL, Billo RE, Bidanda B (1998) A neural network process model for abrasive flow machining operations. J Manuf Syst 17(1):52–64

    Article  Google Scholar 

  175. Jain RK, Jain VK (2000) Optimum selection of machining conditions in abrasive flow machining using neural network. J Mater Process Technol 108:62–67

    Article  Google Scholar 

  176. Vaxevanidis NM, Markopoulos A, Petropoulos G (2010) Artificial neural network modelling of surface quality characteristics in abrasive water jet machining of trip steel sheet. In: Davim JP (ed) Artificial intelligence in manufacturing research. Nova Science Publishers Inc, New York, pp 79–99

    Google Scholar 

  177. Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38:8316–8326

    Article  Google Scholar 

  178. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  179. Azadegan A, Porobic L, Ghazinoory S, Samouei P, Kheirkhah AS (2011) Fuzzy logic in manufacturing: a review of literature and a specialized application. Int J Prod Econ 132:258–270

    Article  Google Scholar 

  180. Mohd Adnan MRH, Mohd Zain A, Haron H (2011) Consideration of fuzzy components for prediction of machining performance: a review. Procedia Eng 24:754–758

    Article  Google Scholar 

  181. Ralston PAS, Stoll KE, Ward TL (1992) Fuzzy logic control of chip form during turning. Comput Ind Eng 22(3):223–230

    Article  Google Scholar 

  182. Balazinski M, Bellerose M, Czogala E (1994) Application of fuzzy logic techniques to the selection of cutting parameters in machining processes. Fuzzy Sets Syst 63:307–312

    Article  Google Scholar 

  183. Chen Y, Hui A, Du R (1995) A fuzzy expert system for the design of machining operations. Int J Mach Tools Manuf 35(12):1605–1621

    Article  Google Scholar 

  184. Hashmi K, Graham ID, Mills B (2003) Data selection for turning carbon steel using a fuzzy logic approach. J Mater Process Technol 135:44–58

    Article  Google Scholar 

  185. Hashmi K, Graham ID, Mills B, Hashmi MSJ (2003) Adjustment approach for fuzzy logic model based selection of non-overlapping machining data in the turning operation. J Mater Process Technol 142:152–162

    Article  Google Scholar 

  186. Hanafi I, Khamlichi A, Cabrera FM, Nunez Lopez PJ, Jabbouri A (2012) Fuzzy rule based predictive model for cutting force in turning of reinforced PEEK composite. Measurement 45:1424–1435

    Article  Google Scholar 

  187. Azmi AI (2012) Design of fuzzy logic model for the prediction of tool performance during machining of composite materials. Procedia Eng 38:208–217

    Article  Google Scholar 

  188. Ramanujam R, Venkatesa K, Saxena V, Pandey R, Harsha T, Kumar F (2014) Optimization of machining parameters using fuzzy based principal components analysis during dry turning operation of Inconel 625—a hybrid approach. Procedia Eng 97:668–676

    Article  Google Scholar 

  189. Sharma S, Tamang S, Devarasiddappa D, Chandrasekran M (2014) Fuzzy logic modeling and multiple performance optimization in turning GFRP composites using desirability function analysis. Procedia Mater Sci 6:1805–1814

    Article  Google Scholar 

  190. Venkataramaiah P, DharmaReddy K, Meramma P (2014) Analysis of influence of feed rate and tool geometry on cutting forces in turning using Taguchi method and fuzzy logic. Procedia Mater Sci 5:1692–1701

    Article  Google Scholar 

  191. Thakur A, Dewangan S, Patnaik Y, Gangopadhyay S (2014) Prediction of work hardening during machining Inconel 825 using fuzzy logic method. Procedia Mater Sci 5:2046–2053

    Article  Google Scholar 

  192. Marani Barzani M, Zalnezhad E, Sarhan AAD, Farahany S, Ramesh S (2015) Fuzzy logic based model for predicting surface roughness of machined Al–Si–Cu–Fe die casting alloy using different additives-turning. Measurement 61:150–161

    Article  Google Scholar 

  193. Huang PT, Chen JC (1998) Fuzzy logic-base tool breakage detecting system in end milling operations. Comput Ind Eng 35(1–2):37–40

    Article  Google Scholar 

  194. Peres CR, Guerra REH, Haber Haber R, Alique A, Ros S (1999) Fuzzy model and hierarchical fuzzy control integration: an approach for milling process optimization. Comput Ind 39:199–207

    Article  Google Scholar 

  195. Iqbal A, He N, Li L, Dar NU (2007) A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process. Expert Syst Appl 32:1020–1027

    Article  Google Scholar 

  196. Kim D, Jeon D (2011) Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors. Precis Eng 35:143–152

    Article  Google Scholar 

  197. Mahesh TP, Rajesh R (2014) Optimal selection of process parameters in CNC end milling of Al 7075-T6 aluminium alloy using a Taguchi-fuzzy approach. Procedia Mater Sci 5:2493–2502

    Article  Google Scholar 

  198. Ali YM, Zhang LC (1997) Estimation of residual stresses induced by grinding using a fuzzy logic approach. J Mater Process Technol 63:875–880

    Article  Google Scholar 

  199. Lezanski P (2001) An intelligent system for grinding wheel condition monitoring. J Mater Process Technol 109:258–263

    Article  Google Scholar 

  200. Nandi AK, Pratihar DK (2004) Automatic design of fuzzy logic controller using a genetic algorithm—to predict power requirement and surface finish in grinding. J Mater Process Technol 148:288–300

    Article  MATH  Google Scholar 

  201. Virivinti N, Mitra K (2014) Fuzzy expected value analysis of an industrial grinding process. Powder Technol 268:9–18

    Article  Google Scholar 

  202. Lin C-T, Chung I-F, Huang S-Y (2001) Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM. Fuzzy Sets Syst 122:499–511

    Article  MathSciNet  Google Scholar 

  203. Lin JL, Lin CL (2005) The use of grey-fuzzy logic for the optimization of the manufacturing process. J Mater Process Technol 160:9–14

    Article  Google Scholar 

  204. Kao CC, Shih AJ (2008) Design and turning of a fuzzy logic controller for micro-hole electrical discharge machining. J Manuf Process 10:61–73

    Article  Google Scholar 

  205. Vundavilli PR, Paprappagoudar MB, Kodali SP, Benguluri S (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl-Based Syst 27:456–464

    Article  Google Scholar 

  206. Kanish TC, Kuppan P, Narayanan S, Ashok SD (2014) A fuzzy logic based model to predict the improvement in surface roughness in magnetic field assisted abrasive finishing. Procedia Eng 97:1948–1956

    Article  Google Scholar 

  207. Hashmi K, El Baradie MA, Ryan M (1999) Fuzzy logic based intelligent selection of machining parameters. J Mater Process Technol 94:94–111

    Article  Google Scholar 

  208. El Baradie MA (1997) A fuzzy logic model for machining data selection. Int J Mach Tools Manuf 37(9):1353–1372

    Article  Google Scholar 

  209. D’ Errico G (2001) Fuzzy control systems with application to machining process. J Mater Process Technol 109:38–43

    Article  Google Scholar 

  210. Hashmi K, El Baradie MA, Ryan M (1998) Fuzzy logic based intelligent selection of machining parameters. Comput Ind Eng 35(3–4):571–574

    Article  Google Scholar 

  211. Mpofu K, Tlale NS (2012) Multi-level decision making in reconfigurable machining systems using fuzzy logic. J Manuf Syst 31:103–112

    Article  Google Scholar 

  212. Sharif Ullah AMM, Habib KH (2006) A human-assisted knowledge extraction method for machining operations. Adv Eng Inf 20:335–350

    Article  Google Scholar 

  213. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464

    Article  Google Scholar 

  214. Reddy SVB, Shunmugan MS, Narendran TT (1998) Optimal sub-division of the depth of cut to achieve minimum production cost in multi-pass turning using a genetic algorithm. J Mater Process Technol 79:101–108

    Article  Google Scholar 

  215. Sardinas RQ, Santana MR, Brindis EA (2006) Genetic algorithm-based multi-objective optimization of cutting parameters in turning process. Eng Appl Artif Intell 19:127–133

    Article  Google Scholar 

  216. D’ Addona DM, Teti R (2013) Genetic algorithm-based optimization of cutting parameters in turning processes. Procedia CIRP 7:323–328

    Article  Google Scholar 

  217. Del Prete A, Primo T, Franch R (2013) Super-Nickel orthogonal turning operations optimization. Procedia CIRP 8:164–169

    Article  Google Scholar 

  218. Dhabale R, Jatti VKS, Singh TP (2014) Multi-objective optimization of turning process during machining of AlMg1SiCu using non-dominated sorted genetic algorithm. Procedia Mater Sci 6:961–966

    Article  Google Scholar 

  219. Shunmugan MS, Reddy SVB, Narendran TT (2000) Selection of optimal conditions in multi-pass face-milling using a genetic algorithm. Int J Mach Tools Manuf 40:401–414

    Article  Google Scholar 

  220. Wang ZB, Rahman M, Wong YS, Sun J (2005) Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int J Mach Tools Manuf 45:1726–1734

    Article  Google Scholar 

  221. Oktem H, Erzurumlu T, Erzincanli F (2006) Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater Des 27:735–744

    Article  Google Scholar 

  222. Hou T-H, Su C-H, Liu W-L (2007) Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol 173:153–162

    Article  Google Scholar 

  223. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10:445–456

    Article  Google Scholar 

  224. Dikshit MK, Puri AB, Maity A, Banerjee AJ (2014) Analysis of cutting forces and optimization of cutting parameters in high speed ball-end milling using response surface methodology and genetic algorithm. Procedia Mater Sci 5:1623–1632

    Article  Google Scholar 

  225. Dhavamani C, Alwarsamy T (2012) Optimization of machining parameters for aluminum and silicon carbide composite using genetic algorithm. Procedia Eng 38:1994–2004

    Article  Google Scholar 

  226. Lee K-M, Hsu M-R, Chou J-H, Guo C-Y (2011) Improved differential evolution approach for optimization of surface grinding process. Expert Syst Appl 38:5680–5686

    Article  Google Scholar 

  227. Pai D, Rao S, D’Souza R (2013) Application of response surface methodology and enhanced non-dominated sorting genetic algorithm for optimization of grinding process. Procedia Eng 64:1199–1208

    Article  Google Scholar 

  228. Mandal D, Pal SK, Saha P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186:154–162

    Article  Google Scholar 

  229. Saha P, Tarafdar D, Pal SK, Saha P, Srivastava AK, Das K (2013) Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through neuro-genetic technique. Appl Soft Comput 13:2065–2074

    Article  Google Scholar 

  230. Senthilkumar C, Ganesan G, Karthikeyan R (2011) Parametric optimization of electrochemical machining of Al/15 % SiCp composites using NSGA-II. Trans Nonferrous Met Soc China 21:2294–2300

    Article  Google Scholar 

  231. Zain AM, Haron H, Sharif S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA-GA. Appl Soft Comput 11:5350–5359

    Article  Google Scholar 

  232. Aultrin KSJ, Anand MD, Jose PJ (2012) Modelling the cutting process and cutting performance in abrasive water jet machining using genetic-fuzzy approach. Procedia Eng 38:4013–4020

    Article  Google Scholar 

  233. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957

    Article  Google Scholar 

  234. Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci 220:399–407

    Article  MathSciNet  Google Scholar 

  235. Baskar N, Asokan P, Prabhaharan G, Saravanan R (2005) Optimization of machining parameters for milling operations using non-conventional methods. Int J Adv Manuf Technol 25(11–12):1078–1088

    Article  Google Scholar 

  236. Chan FTS, Swarnkar R (2006) Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robot Comput-Integr Manuf 22(4):353–362

    Article  Google Scholar 

  237. Liu X, Hong Y, Zhonghua N, Jianchang Q, Xiaoli Q (2013) Process planning optimization of hole-making operations using ant colony algorithm. Int J Adv Manuf Technol 69(1–4):753–769

    Article  Google Scholar 

  238. Karpat Y, Özel T (2007) Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. Int J Adv Manuf Technol 35(3–4):234–247

    Article  Google Scholar 

  239. Raja SB, Baskar N (2012) Application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Syst Appl 39(5):5982–5989

    Article  Google Scholar 

  240. Marko H, Simon K, Tomaz I, Matej P, Joze B, Miran B (2014) Turning parameters optimization using particle swarm optimization. Procedia Eng 69:670–677

    Article  Google Scholar 

  241. Aich U, Banerjee S (2014) Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization. Appl Math Model 38(11–12):2800–2818

    Article  Google Scholar 

  242. Khan Z, Prasad B, Singh T (1997) Machining condition optimization by genetic algorithms and simulated annealing. Comput Ops Res 24(7):647–657

    Google Scholar 

  243. Yang S-H, Srinivas J, Mohan S, Lee D-M, Balaji S (2009) Optimization of electric discharge machining using simulated annealing. J Mater Process Technol 209(9):4471–4475

    Google Scholar 

  244. Olvera D, Zuniga AE, Martinez-Alfaro H, Lopez de Lacalle LN, Rodriguez CA, Campa FJ (2014) Determination of the stability lobes in milling operations based on homotopy and simulated annealing techniques. Mechatronics 24(3):177–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos P. Markopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markopoulos, A.P., Habrat, W., Galanis, N.I., Karkalos, N.E. (2016). Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing. In: Davim, J. (eds) Design of Experiments in Production Engineering. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23838-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23838-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23837-1

  • Online ISBN: 978-3-319-23838-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics