Skip to main content

A Robotic Platform for Lower Limb Optical Motion Tracking in Open Space

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 38))

Abstract

Conventional human motion tracking techniques based on optical systems reports important limitations for mobile applications (e.g. small spatial covering, poor environment flexibility). The present paper addresses a novel approach for optical motion tracking in open space. The measurement unit is transferred from its stationary basis onto a robotic moving platform. The platform design and limitations are described in the first place. It follows a comparative analysis of the measurement data accuracy for the stationary and mobile system. Post-processing techniques to convert acquired motion from the platform coordinate system into the ground’s absolute one are evaluated for the specific application of gait analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muybridge E (1887) Animal locomotion. An electro-photographic investigation of consecutive phases of animal movements (1872–1885). http://www.loc.gov/pictures/item/31004968/. Accessed 08 Nov 2014

  2. Marey E-J (1873) La machine animale, locomotion terrestre et aérienne. G. Baillie, Paris

    Google Scholar 

  3. Whittle MW (1982) Calibration and performance of a 3-dimensional television system for kinematic analysis. J Biomech 15(3):185–196

    Article  MathSciNet  Google Scholar 

  4. Whittle MW (1996) Clinical gait analysis: a review. Hum Mov Sci 15(3):369–387

    Article  MathSciNet  Google Scholar 

  5. Zhou H, Hu H (2008) Human motion tracking for rehabilitation—a survey. Biomed Signal Process Control 3(1):1–18

    Article  Google Scholar 

  6. Menache A (2004) Motion tracking system and method

    Google Scholar 

  7. DeVita P, Hortobagyi T (2000) Age causes a redistribution of joint torques and powers during gait. J Appl Physiol 88(5):1804–1811

    Google Scholar 

  8. Kirtley C, Whittle MW, Jefferson RJ (1985) Influence of walking speed on gait parameters. J Biomed Eng 7(4):282–288

    Article  Google Scholar 

  9. Thomas M, McPherson M, Thayer R (1995) Offset skating characteristics of world cup level cross-country skiers. In: ISBS-conference proceedings archive, vol 1, no 1

    Google Scholar 

  10. Danion F, Varraine E, Bonnard M, Pailhous J (2003) Stride variability in human gait: the effect of stride frequency and stride length. Gait Posture 18(1):69–77

    Article  Google Scholar 

  11. Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, Young M, Heiderscheit BC (2005) Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc 37(1):108–114

    Article  Google Scholar 

  12. Stoquart G, Detrembleur C, Lejeune T (2008) Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiologie Clinique/Clinical Neurophysiology 38(2):105–116

    Article  Google Scholar 

  13. Nessler JA, Leone CJD, Gilliland S (2009) Nonlinear time series analysis of knee and ankle kinematics during side by side treadmill walking. Chaos Interdiscip J Nonlinear Sci 19(2):026104

    Article  Google Scholar 

  14. Alton F, Baldey L, Caplan S, Morrissey MC (1998) A kinematic comparison of overground and treadmill walking. Clin Biomech 13(6):434–440

    Article  Google Scholar 

  15. Wank V, Frick U, Schmidtbleicher D (1998) Kinematics and electromyography of lower limb muscles in overground and treadmill running. Int J Sports Med 19(07):455–461

    Article  Google Scholar 

  16. Dany Lafontaine ML (2010) 3-D kinematics using moving cameras. Part 1: development and validation of the mobile data acquisition system. Hum Kinet J. http://journals.humankinetics.com/jab-back-issues/jabvolume19issue4november/3dkinematicsusingmovingcameraspart1development-andvalidationofthemobiledataacquisitionsystem. Accessed 12 Nov 2014

  17. Codamotion-Movement Analysis. http://www.codamotion.com/. Accessed 10 Nov 2014

  18. Atracsys-accuTrack 250. http://atracsys.com/_products/accuTrack_compact.php. Accessed 14 Apr 2014

  19. Measurement Sciences Products-Measurement Sciences. http://www.ndigital.com/msci/products/#optical-measurement. Accessed 10 Nov 2014

  20. Ortlieb A, Olivier J, Bouri M, Bleuler H (2014) Evaluation of an active optical system for lower limb motion tracking. 3D AHM, Lausanne

    Google Scholar 

  21. Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31(4):377–403

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The study was supported by NCCR robotics, the National Center of Competence in Research (Switzerland), the ASRIM (Association Suisse Romande et Italienne contre les Myopathies) and the FSRMM (Fondation Suisse de Recherche sur les Maladies Musculaires).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ortlieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortlieb, A., Olivier, J., Bouri, M., Bleuler, H. (2016). A Robotic Platform for Lower Limb Optical Motion Tracking in Open Space. In: Bleuler, H., Bouri, M., Mondada, F., Pisla, D., Rodic, A., Helmer, P. (eds) New Trends in Medical and Service Robots. Mechanisms and Machine Science, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-23832-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23832-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23831-9

  • Online ISBN: 978-3-319-23832-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics