Skip to main content

Beyond the Runs Theorem

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9309))

Included in the following conference series:

  • International Symposium on String Processing and Information Retrieval

Abstract

In [3], a short and elegant proof was presented showing that a word of length n contains at most \(n-3\) runs. Here we show, using the same technique and a computer search, that the number of runs in a binary word of length n is at most \(\frac{22}{23}n<0.957n\).

Štěpán Holub is supported by the Czech Science Foundation grant number 13-01832S.

J. Fisher and M. Lewenstein are supported by a Grant from the GIF, the German-Israeli Foundation for Scientific Research and Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.shino.ecei.tohoku.ac.jp/runs/

  2. Bannai, H., Giraud, M., Kusano, K., Matsubara, W., Shinohara, A., Simpson, J.: The number of runs in a ternary word. In: Proc. PSC, pp. 178–181 (2010)

    Google Scholar 

  3. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem (2014). arXiv:1406.0263 [cs.DM]

  4. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Proc. SODA, pp. 562–571 (2015)

    Google Scholar 

  5. Crochemore, M., Ilie, L.: Maximal repetitions in strings. Journal of Computer and System Sciences, 796–807 (2008)

    Google Scholar 

  6. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and combinatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deza, A., Franek, F.: Bannai et al. method proves the d-step conjecture for strings (2015)

    Google Scholar 

  9. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs in a string. International Journal of Foundations of Computer Science 1(195), 195–203 (2008)

    Article  MathSciNet  Google Scholar 

  10. Giraud, M.: Not so many runs in strings. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 232–239. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Giraud, M.: Asymptotic behavior of the numbers of runs and microruns. Information and Computation 207(11), 1221–1228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iliopoulos, C.S., Moore, D., Smyth, W.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS, pp. 596–604 (1999)

    Google Scholar 

  14. Kusano, K., Narisawa, K., Shinohara, A.: On morphisms generating run-rich strings. In: Proc. PSC, pp. 35–47 (2013)

    Google Scholar 

  15. Main, M.G.: Detecting leftmost maximal periodicities. Discrete Applied Mathematics 25(1–2), 145–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proc. PSC, pp. 140–145 (2008)

    Google Scholar 

  17. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theor. Comput. Sci. 401, 165–171 (2006)

    Article  MathSciNet  Google Scholar 

  18. Rytter, W.: The number of runs in a string: improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Simpson, J.: Modified Padovan words and the maximum number of runs in a word. Australas. J. Comb. 46, 129–145 (2010)

    MATH  Google Scholar 

  20. Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theor. Comput. Sci. 249(2), 343–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smyth, W.F.: Computing regularities in strings: A survey. Eur. J. Comb. 34(1), 3–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro I .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fischer, J., Holub, Š., I, T., Lewenstein, M. (2015). Beyond the Runs Theorem. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds) String Processing and Information Retrieval. SPIRE 2015. Lecture Notes in Computer Science(), vol 9309. Springer, Cham. https://doi.org/10.1007/978-3-319-23826-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23826-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23825-8

  • Online ISBN: 978-3-319-23826-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics