Skip to main content

Part of the book series: ICSA Book Series in Statistics ((ICSABSS,volume 9))

Abstract

This chapter extends the results in Chap. 9. It is common to come into contact with data that have a hierarchical or clustered structure. Examples include patients within a hospital, students within a class, factories within an industry, or families within a neighborhood. In such cases, there is variability between the clusters, as well as variability between the units which are nested within the clusters. Hierarchical models take into account the variability at each level of the hierarchy, and thus allow for the cluster effects at different levels to be analyzed within the models (The Annals of Thoracic Surgery 72(6):2155–2168, 2001). This chapter tells how one can use the information from different levels to produce a subject-specific model. This is a three-level nested design but can be expanded to higher levels, though readily available computing may be challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin, P. C. (2010). Estimating multilevel logistic regression models when the number of clusters is low: A comparison of different statistical software procedures. The International Journal of Biostatistics, 6(1), 1–20.

    Article  MathSciNet  Google Scholar 

  • Hartzel, J., Agresti, A., & Caffo, B. (2001). Multinomial logit random effects models. Statistical Modelling, 1(2), 81–102.

    Article  Google Scholar 

  • Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. Biometrics, 64(2), 627–634.

    Article  MathSciNet  Google Scholar 

  • Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2012). Modeling between- and within- subject variance in Ecological Momentary Assessment (EMA) data using mixed-effects location scale models. Statistics in Medicine, 31(27), 3328–3336.

    Article  MathSciNet  Google Scholar 

  • Kuss, O. (2002). How to use SAS® for logistic regression with correlated data. In SUGI 27 Proceedings, 261-27.

    Google Scholar 

  • Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random effects model: An example. Journal of the Royal Statistical Society Series C (Applied Statistics), 50(3), 325–335.

    Article  MathSciNet  Google Scholar 

  • Longford, N. T. (1993). Random coefficient models. Oxford, England: Clarendon.

    MATH  Google Scholar 

  • Maas, C. J. M., & Hox, J. J. (2004). The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Computational Statistics & Data Analysis, 46(3), 427–440.

    Article  MathSciNet  Google Scholar 

  • McMahon, J. M., Pouget, E. R., & Tortu, S. (2006). A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED. Computational Statistics & Data Analysis, 50(12), 3663–3680.

    Article  MathSciNet  Google Scholar 

  • Newsom, J. T. (2002). A multilevel structural equation model for dyadic data. Structural Equation Modeling: A Multidisciplinary Journal, 9(3), 431–447.

    Article  MathSciNet  Google Scholar 

  • Rasbash, J., Steele, F., Browne, W. J., & Goldstein, H. (2012).User’s guide to WLwiN, Version 2.26. Bristol, England: Centre for Multilevel Modelling, University of Bristol. Retrieved from http://www.bristol.ac.uk/cmm/software/mlwin/download/2-26/manual-web.pdf

  • Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.

    Google Scholar 

  • Rodriquez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A (Statistics in Society), 158(1), 73–89.

    Article  Google Scholar 

  • Schabenberger, O. (2005). Introducing the GLIMMIX procedure for generalized linear mixed models. In SUGI 30 Proceedings, 196-30.

    Google Scholar 

  • Shahian, D. M., Normand, S. L., Torchiana, D. F., Lewis, S. M., Pastore, J. O., Kuntz, R. E., et al. (2001). Cardiac surgery report cards: Comprehensive review and statistical critique. The Annals of Thoracic Surgery, 72(6), 2155–2168.

    Article  Google Scholar 

  • Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61(3), 439–447.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch10 (csv 1483 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wilson, J.R., Lorenz, K.A. (2015). Hierarchical Logistic Regression Models. In: Modeling Binary Correlated Responses using SAS, SPSS and R. ICSA Book Series in Statistics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23805-0_10

Download citation

Publish with us

Policies and ethics