Advertisement

Physiological and Pathophysiological Regulation of Transporters for Organic Cations

  • Eberhard SchlatterEmail author
Chapter

Abstract

Transporters for organic cations (OCTs, OCTNs, MATEs) are polyspecific membrane proteins which translocate many organic and some inorganic cations across plasma membranes in a driving force dependent and saturable manner. These transporters are responsible for the cellular uptake and extrusion of many cationic drugs and toxins and therefore prerequisite for their metabolism, therapeutical actions, but also for their negative side effects. Together with the molecular identification of these transporters data were published from in vivo and in vitro experiments demonstrating that drug transport is regulated independent of changes in their driving forces. In this chapter the manyfold regulation of OCTs, OCTNs, and MATEs from various mammals including humans is summarized. These regulatory processes involve both changes in substrate affinities (Km) as well as in transport capacity (Vmax) or changes in expression rates. Importantly, all these regulatory processes of the various transporter proteins are highly paralog and ortholog dependent. Acute effects of various protein kinases on transport activity within minutes has been demonstrated, including effects on the transporter molecule itself as well as on transporter trafficking to and from the membrane. Kinases and several other cytosolic factors are involved in a chronic regulation of the expression of transporters for organic cations in several organs. In addition, transporter expression is also epigenetically regulated, a mechanism which apparently contributes to the organ specific expression of the transporters. It also plays a role in altered transporter expression in tumor tissues, a feature which is highly relevant for drug efficiencies in antitumor therapies. Finally, in this chapter many studies on transporter regulation in very divers pathophysiological situations including several hepatic or renal diseases are discussed

Keywords

Transport regulation Protein kinases Transcriptional regulation Translational regulation Epigenetic regulation Substrate affinity Protein trafficking Pathophysiological regulation Cytosolic factors Nuclear factors 

References

  1. 1.
    Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem. 2008;51:5932–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Aleksunes LM, Augustine LM, Scheffer GL, Cherrington NJ, Manautou JE. Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology. 2008;250(2–3):82–8.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Aoki M, Terada T, Kajiwara M, Ogasawara K, Ikai I, Ogawa O, et al. Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation. Am J Physiol Renal Physiol. 2008;295(1):F165–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Bednarczyk D, Mash EA, Aavula BR, Wright SH. NBD-TMA: a novel fluorescent substrate of the peritubular organic cation transporter of renal proximal tubules. Pflugers Arch. 2000;440:184–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Berkhin EB, Humphreys MH. Regulation of renal tubular secretion of organic compounds. Kidney Int. 2001;59:17–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schröter R, et al. Characterization of regulatory mechanisms and states of human organic cation transporter 2. Am J Physiol Cell Physiol. 2006;290(6):C1521–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Bodeman CE, Dzierlenga AL, Tally CM, Mulligan RM, Lake AD, Cherrington NJ, et al. Differential regulation of hepatic organic cation transporter 1, organic anion-transporting polypeptide 1a4, bile-salt export pump, and multidrug resistance-associated protein 2 transporter expression in lymphocyte-deficient mice associates with interleukin-6 production. J Pharmacol Exp Ther. 2013;347(1):136–44.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bottalico B, Larsson I, Brodszki J, Hernandez-Andrade E, Casslen B, Marsal K, et al. Norepinephrine transporter (NET), serotonin transporter (SERT), vesicular monoamine transporter (VMAT2) and organic cation transporters (OCT1, 2 and EMT) in human placenta from pre-eclamptic and normotensive pregnancies. Placenta. 2004;25(6):518–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Brena RM, Costello JF. Genome-epigenome interactions in cancer. Hum Mol Genet. 2007;16 Spec No 1:R96–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002;61:853–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Broderick TL, El MA, Chiasson JL, Wang D, Jankowski M, Gutkowska J. The effects of exercise training on gamma-butyrobetaine hydroxylase and novel organic cation transporter-2 gene expression in the rat. Appl Physiol Nutr Metab. 2011;36(6):781–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, et al. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996;271:32599–604.PubMedCrossRefGoogle Scholar
  13. 13.
    Cetinkaya I, Ciarimboli G, Yalcinkaya G, Mehrens T, Velic A, Hirsch JR, et al. Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol. 2003;284:F293–302.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang TT, Shyu MK, Huang MC, Hsu CC, Yeh SY, Chen MR, et al. Hypoxia-mediated down-regulation of OCTN2 and PPARalpha expression in human placentas and in BeWo cells. Mol Pharm. 2011;8(1):117–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen L, Hong C, Chen EC, Yee SW, Xu L, Almof EU, et al. Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3. Pharmacogenomics J. 2013;13(2):110–20.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos. 2004;32(7):734–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, et al. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–84.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ciarimboli G. Organic cation transporters. Xenobiotica. 2008;38(7–8):936–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Ciarimboli G, Schlatter E. Regulation of organic cation transport. Pflugers Arch. 2005;449:423–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Ciarimboli G, Struwe K, Arndt P, Gorboulev V, Koepsell H, Schlatter E, et al. Regulation of the human organic cation transporter hOCT1. J Cell Physiol. 2004;201:420–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ciarimboli G, Koepsell H, Iordanova M, Gorboulev V, Dürner B, Lang D, et al. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 2005;16:1562–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota H-J, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167:1477–84.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–80.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ciarimboli G, Holle SK, Vollenbröker B, Hagos Y, Reuter S, Burckhardt G, et al. New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2. Mol Pharm. 2011;8(1):270–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Ciarimboli G, Schröter R, Neugebauer U, Vollenbröker B, Gabriels G, Brzica H, et al. Kidney transplantation down-regulates expression of organic cation transporters, which translocate beta-blockers and fluoroquinolones. Mol Pharm. 2013;10(6):2370–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Cotton LM, Rodriguez CM, Suzuki K, Orgebin-Crist MC, Hinton BT. Organic cation/carnitine transporter, OCTN2, transcriptional activity is regulated by osmotic stress in epididymal cells. Mol Reprod Dev. 2010;77(2):114–25.PubMedGoogle Scholar
  27. 27.
    Cutler MJ, Choo EF. Overview of SLC22A and SLCO families of drug uptake transporters in the context of cancer treatments. Curr Drug Metab. 2011;12(8):793–807.PubMedCrossRefGoogle Scholar
  28. 28.
    Dangprapai Y, Wright SH. Interaction of H+ with the extracellular and intracellular aspects of hMATE1. Am J Physiol Renal Physiol. 2011;301(3):F520–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    D’Argenio G, Petillo O, Margarucci S, Torpedine A, Calarco A, Koverech A, et al. Colon OCTN2 gene expression is up-regulated by peroxisome proliferator-activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem. 2010;285(35):27078–87.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Denk GU, Soroka CJ, Mennone A, Koepsell H, Beuers U, Boyer JL. Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology. 2004;39(5):1382–9.PubMedCrossRefGoogle Scholar
  32. 32.
    dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86(8):1233–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Dudley AJ, Bleasby K, Brown CDA. The organic cation transporter OCT2 mediates the uptake of β-adrenoceptor antagonists across the apical membrane of renal LLC-PK1 cell monolayers. Br J Pharmacol. 2000;131:71–9.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Eder K, Ringseis R. The role of peroxisome proliferator-activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol. 2010;628(1–3):1–5.PubMedCrossRefGoogle Scholar
  35. 35.
    El-Gebali S, Bentz S, Hediger MA, Anderle P. Solute carriers (SLCs) in cancer. Mol Aspects Med. 2013;34(2–3):719–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Faber KN, Muller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev. 2003;55(1):107–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Fabre J, Balant L. Renal failure, drug pharmacokinetics and drug action. Clin Pharmacokinet. 1976;1(2):99–120.PubMedCrossRefGoogle Scholar
  38. 38.
    Feng B, LaPerle JL, Chang G, Varma MV. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Expert Opin Drug Metab Toxicol. 2010;6(8):939–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fujiya M, Inaba Y, Musch MW, Hu S, Kohgo Y, Chang EB. Cytokine regulation of OCTN2 expression and activity in small and large intestine. Inflamm Bowel Dis. 2011;17(4):907–16.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Furuichi Y, Sugiura T, Kato Y, Takakura H, Hanai Y, Hashimoto T, et al. Muscle contraction increases carnitine uptake via translocation of OCTN2. Biochem Biophys Res Commun. 2012;418(4):774–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 “drug” transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One. 2012;7(7):e40796.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Gerlyand AM, Sitar DS. Protein kinase inhibition differentially regulates organic cation transport. Can J Physiol Pharmacol. 2009;87(10):821–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Goralski KB, Sitar DS. Tetraethylammonium and amantadine identify distinct organic cation transporters in rat renal cortical proximal and distal tubules. J Pharmacol Exp Ther. 1999;290:295–302.PubMedGoogle Scholar
  45. 45.
    Goralski KB, Lou GL, Prowse MT, Gorboulev V, Volk C, Koepsell H, et al. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002;303:959–68.PubMedCrossRefGoogle Scholar
  46. 46.
    Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16:871–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Grabner A, Brast S, Sucic S, Bierer S, Hirsch B, Pavenstädt H, et al. LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment. Cell Mol Life Sci. 2011;68(24):4079–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004;308:949–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Grube M, Ameling S, Noutsias M, Kock K, Triebel I, Bonitz K, et al. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. Am J Pathol. 2011;178(6):2547–59.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Gründemann D, Babin-Ebell J, Martel F, Örding N, Schmidt A, Schömig E. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem. 1997;272:10408–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Guckel D, Ciarimboli G, Pavenstädt H, Schlatter E. Regulation of organic cation transport in isolated mouse proximal tubules involves complex changes in protein trafficking and substrate affinity. Cell Physiol Biochem. 2012;30:269–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Habu Y, Yano I, Takeuchi A, Saito H, Okuda M, Fukatsu A, et al. Decreased activity of basolateral organic ion transports in hyperuricemic rat kidney: roles of organic ion transporters, rOAT1 rOAT3 and rOCT2. Biochem Pharmacol. 2003;66:1107–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Hanafy S, El-Kadi AO, Jamali F. Effect of inflammation on molecular targets and drug transporters. J Pharm Pharm Sci. 2012;15(3):361–75.PubMedGoogle Scholar
  55. 55.
    Hayer-Zillgen M, Brüss M, Bönisch H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002;136:829–36.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Heemskerk S, Wouterse AC, Russel FG, Masereeuw R. Nitric oxide down-regulates the expression of organic cation transporters (OCT) 1 and 2 in rat kidney during endotoxemia. Eur J Pharmacol. 2008;584(2–3):390–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Heise M, Lautem A, Knapstein J, Schattenberg JM, Hoppe-Lotichius M, Foltys D, et al. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer. 2012;12:109.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Hirsch B, Brast S, Grabner A, Holle SK, Guckel D, Schlatter E, et al. Molecular interaction of organic cation transporters with the tetraspanin CD63 modulates transporter trafficking and their trafficking-associated regulation. FASEB J. 2012;26:1152.16.Google Scholar
  59. 59.
    Hohage H, Löhr M, Querl U, Greven J. The renal basolateral transport system for organic anions: properties of the regulation mechanism. J Pharmacol Exp Ther. 1994;269:659–64.PubMedGoogle Scholar
  60. 60.
    Hohage H, Mörth DM, Querl IU, Greven J. Regulation by protein kinase C of the contraluminal transport system for organic cations in rabbit kidney S2 proximal tubules. J Pharmacol Exp Ther. 1994;268:897–901.PubMedGoogle Scholar
  61. 61.
    Hohage H, Querl IU, Mörth DM, Greven J. The basolateral organic cation transport system of rabbit kidney proximal tubules. Influence of anorganic anions. J Pharmacol Exp Ther. 1996;279:1086–91.PubMedGoogle Scholar
  62. 62.
    Hohage H, Stachon A, Feidt C, Hirsch JR, Schlatter E. Regulation of organic cation transport in IHKE-1 and LLC-PK1 cells. Fluorimetric studies with 4-(4-dimethylaminostyryl)-N-methylpyridinium. J Pharmacol Exp Ther. 1998;286:305–10.PubMedGoogle Scholar
  63. 63.
    Holle SK, Ciarimboli G, Edemir B, Neugebauer U, Pavenstädt H, Schlatter E. Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch. 2011;462(2):359–69.PubMedCrossRefGoogle Scholar
  64. 64.
    Hu QH, Zhang X, Wang X, Jiao RQ, Kong LD. Quercetin regulates organic ion transporter and uromodulin expression and improves renal function in hyperuricemic mice. Eur J Nutr. 2012;51(5):593–606.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang FD, Kung FL, Tseng YC, Chen MR, Chan HS, Lin CJ. Regulation of protein expression and function of octn2 in forskolin-induced syncytialization in BeWo Cells. Placenta. 2009;30(2):187–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Ikemura K, Nakagawa E, Kurata T, Iwamoto T, Okuda M. Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury. Drug Metab Pharmacokinet. 2013;28(6):504–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Inui KI, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 2000;58:944–58.PubMedCrossRefGoogle Scholar
  68. 68.
    Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M, et al. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 2012;16(6):843–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 2002;62(2):514–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Jiang W, Prokopenko O, Wong L, Inouye M, Mirochnitchenko O. IRIP, a new ischemia/reperfusion-inducible protein that participates in the regulation of transporter activity. Mol Cell Biol. 2005;25(15):6496–508.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, et al. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol. 2001;279:F679–87.Google Scholar
  72. 72.
    Kato Y, Yoshida K, Watanabe C, Sai Y, Tsuji A. Screening of the interaction between xenobiotic transporters and PDZ proteins. Pharm Res. 2004;21(10):1886–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol. 2005;67(3):734–43.PubMedCrossRefGoogle Scholar
  74. 74.
    Kato Y, Watanabe C, Tsuji A. Regulation of drug transporters by PDZ adaptor proteins and nuclear receptors. Eur J Pharm Sci. 2006;27(5):487–500.PubMedCrossRefGoogle Scholar
  75. 75.
    Kekuda R, Prasad PD, Wu X, Wang H, Fei Y-J, Leibach FH, et al. Cloning and functional characterizatrion of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273:15971–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Kikuchi R, McCown M, Olson P, Tateno C, Morikawa Y, Katoh Y, et al. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver. Drug Metab Dispos. 2010;38(11):1954–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim YK, Dantzler WH. Specificity of basolateral organic cation transport in snake renal proximal tubules. Am J Physiol. 1996;270:R1025–30.PubMedGoogle Scholar
  78. 78.
    Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62(1):1–86.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Koch A, Konig B, Stangl GI, Eder K. PPAR alpha mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis. Exp Biol Med. 2008;233(3):356–65.CrossRefGoogle Scholar
  80. 80.
    Koepsell H. Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol. 1998;60:243–66.PubMedCrossRefGoogle Scholar
  81. 81.
    Koepsell H. Substrate recognition and translocation by polyspecific organic cation transporters. Biol Chem. 2011;392(1–2):95–101.PubMedGoogle Scholar
  82. 82.
    Koepsell H. Polyspecific organic cation transporters and their biomedical relevance in kidney. Curr Opin Nephrol Hypertens. 2013;22:533–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Koepsell H, Endou H. The SLC22 drug transporter family. Pflugers Arch. 2004;447:666–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Koepsell H, Busch AE, Gorboulev V, Arndt P. Structure and function of renal organic cation transporters. News Physiol Sci. 1998;13:11–6.PubMedGoogle Scholar
  85. 85.
    Koepsell H, Schmitt BM, Gorboulev V. Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003;150:36–90.PubMedGoogle Scholar
  86. 86.
    Komazawa H, Yamaguchi H, Hidaka K, Ogura J, Kobayashi M, Iseki K. Renal uptake of substrates for organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2 is altered in rats with adenine-induced chronic renal failure. J Pharm Sci. 2013;102(3):1086–94.PubMedCrossRefGoogle Scholar
  87. 87.
    Lameire N, Kruse V, Rottey S. Nephrotoxicity of anticancer drugs-–an underestimated problem? Acta Clin Belg. 2011;66(5):337–45.PubMedGoogle Scholar
  88. 88.
    Lautem A, Heise M, Grasel A, Hoppe-Lotichius M, Weiler N, Foltys D, et al. Downregulation of organic cation transporter 1 (SLC22A1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int J Oncol. 2013;42(4):1297–304.PubMedGoogle Scholar
  89. 89.
    Le VM, Lecureur V, Moreau A, Stieger B, Fardel O. Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab Dispos. 2009;37(11):2228–35.CrossRefGoogle Scholar
  90. 90.
    Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol. 2004;44:137–66.PubMedCrossRefGoogle Scholar
  91. 91.
    Li Q, Yang H, Peng X, Guo D, Dong Z, Polli JE, et al. Ischemia/Reperfusion-inducible protein modulates the function of organic cation transporter 1 and multidrug and toxin extrusion 1. Mol Pharm. 2013;10(7):2578–87.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Lin R, Li X, Li J, Zhang L, Xu F, Chu Y, et al. Long-term cisplatin exposure promotes methylation of the OCT1 gene in human esophageal cancer cells. Dig Dis Sci. 2013;58(3):694–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Ling B, Alcorn J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Res Vet Sci. 2010;89(2):200–2.PubMedCrossRefGoogle Scholar
  94. 94.
    Ludwig T, Riethmüller C, Gekle M, Schwerdt G, Oberleithner H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004;66:196–202.PubMedCrossRefGoogle Scholar
  95. 95.
    Maeda T, Wakasawa T, Funabashi M, Fukushi A, Fujita M, Motojima K, et al. Regulation of Octn2 transporter (SLC22A5) by peroxisome proliferator activated receptor alpha. Biol Pharm Bull. 2008;31(6):1230–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Maher JM, Slitt AL, Callaghan TN, Cheng X, Cheung C, Gonzalez FJ, et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1alpha. Biochem Pharmacol. 2006;72(4):512–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Martel F, Azevedo I. An update on the extraneuronal monoamine transporter (EMT): characteristics, distribution and regulation. Curr Drug Metab. 2003;4(4):313–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Martel F, Keating E, Calhau C, Gründemann D, Schömig E, Azevedo I. Regulation of human extraneuronal monoamine transporter (hEMT) expressed in HEK293 cells by intracellular second messenger systems. Naunyn Schmiedebergs Arch Pharmacol. 2001;364:487–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Martini M, Ferrara AM, Giachelia M, Panieri E, Siminovitch K, Galeotti T, et al. Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients. Inflamm Bowel Dis. 2012;18(3):439–48.PubMedCrossRefGoogle Scholar
  100. 100.
    Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4alpha and 1alpha regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol. 2013;84(6):808–23.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Massmann V, Edemir B, Schlatter E, Al-Monajjed R, Harrach S, Klassen P, et al. The organic cation transporter 3 (OCT3) as molecular targt of psychotropic drugs: transport chracteristics and acute regulation of cloned murine OCT3. Pflugers Arch. 2014;466:517–27.PubMedCrossRefGoogle Scholar
  102. 102.
    Matsuzaki T, Morisaki T, Sugimoto W, Yokoo K, Sato D, Nonoguchi H, et al. Altered pharmacokinetics of cationic drugs caused by down-regulation of renal rat organic cation transporter 2 (Slc22a2) and rat multidrug and toxin extrusion 1 (Slc47a1) in ischemia/reperfusion-induced acute kidney injury. Drug Metab Dispos. 2008;36(4):649–54.PubMedCrossRefGoogle Scholar
  103. 103.
    Mehrens T, Lelleck S, Çetinkaya I, Knollmann M, Hohage H, Gorboulev V, et al. The affinity of the organic cation transporter rOCT1 is increased by protein kinase C dependent phosphorylation. J Am Soc Nephrol. 2000;11:1216–24.PubMedGoogle Scholar
  104. 104.
    Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, Koepsell H. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun. 1998;248:673–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490–518.CrossRefGoogle Scholar
  106. 106.
    Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10(3):531–9.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Mooslehner KA, Allen ND. Cloning of the mouse organic cation transporter 2 gene, Slc22a2, from an enhancer-trap transgene integration locus. Mamm Genome. 1999;10(3):218–24.PubMedCrossRefGoogle Scholar
  108. 108.
    More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. Comp Hepatol. 2012;11(1):1.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Morisaki T, Matsuzaki T, Yokoo K, Kusumoto M, Iwata K, Hamada A, et al. Regulation of renal organic ion transporters in cisplatin-induced acute kidney injury and uremia in rats. Pharm Res. 2008;25(11):2526–33.PubMedCrossRefGoogle Scholar
  110. 110.
    Motohashi H, Sajurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13:866–74.PubMedGoogle Scholar
  111. 111.
    Motohashi H, Nakao Y, Masuda S, Katsura T, Kamba T, Ogawa O, et al. Precise comparison of protein localization among OCT, OAT, and MATE in human kidney. J Pharm Sci. 2013;102(9):3302–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Nakai K, Tanaka H, Hanada K, Ogata H, Suzuki F, Kumada H, et al. Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos. 2008;36(9):1786–93.PubMedCrossRefGoogle Scholar
  113. 113.
    Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Nie W, Sweetser S, Rinella M, Green RM. Transcriptional regulation of murine Slc22a1 (Oct1) by peroxisome proliferator agonist receptor-alpha and -gamma. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G207–12.PubMedCrossRefGoogle Scholar
  115. 115.
    Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE. Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett. 2008;2(1):11–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Oda M, Koyanagi S, Tsurudome Y, Kanemitsu T, Matsunaga N, Ohdo S. Renal circadian clock regulates the dosing-time dependency of cisplatin-induced nephrotoxicity in mice. Mol Pharmacol. 2014;85(5):715–22.PubMedCrossRefGoogle Scholar
  118. 118.
    Ohashi R, Tamai I, Nezu JJ, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001;59:358–66.PubMedGoogle Scholar
  119. 119.
    Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005;386(Pt 3):575–81.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Okuda M, Saito H, Urakami Y, Takano M, Inui K. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun. 1996;224(2):500–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxin organic cations. Proc Natl Acad Sci U S A. 2005;102:17923–8.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Panesso MC, Shi M, Cho HJ, Paek J, Ye J, Moe OW, et al. Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int. 2014;85(4):855–70.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. J Oral Pathol Med. 2013;42(3):250–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu AS, Nigam SK. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol. 2000;278(4):F635–43.PubMedGoogle Scholar
  125. 125.
    Pietig G, Mehrens T, Hirsch JR, Cetinkaya I, Piechota H, Schlatter E. Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem. 2001;276:33741–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Pietruck F, Ullrich KJ. Transport interactions of different organic cations during their excretion by the intact rat kidney. Kidney Int. 1995;47:1647–57.PubMedCrossRefGoogle Scholar
  127. 127.
    Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. J Biomol Screen. 2013;18(8):851–67.PubMedCrossRefGoogle Scholar
  128. 128.
    Popowski K, Eloranta JJ, Saborowski M, Fried M, Meier PJ, Kullak-Ublick GA. The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4 alpha and suppressed by bile acids. Mol Pharmacol. 2005;67(5):1629–38.PubMedCrossRefGoogle Scholar
  129. 129.
    Pritchard JB, Miller DS. Renal secretion of organic anions and cations. Kidney Int. 1996;49:1649–54.PubMedCrossRefGoogle Scholar
  130. 130.
    Pritchard JB, Miller DS. Renal secretion of organic cations: a multistep process. Adv Drug Deliv Rev. 1997;25:231–42.CrossRefGoogle Scholar
  131. 131.
    Qu Q, Qu J, Zhan M, Wu LX, Zhang YW, Lou XY, et al. Different involvement of promoter methylation in the expression of organic cation/carnitine transporter 2 (OCTN2) in cancer cell lines. PLoS One. 2013;8(10):e76474.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Rohlicek V, Ullrich KJ. Simple device for continuous measurement of fluorescent anions and cations in the rat kidney in situ. Ren Physiol Biochem. 1994;17:57–61.PubMedGoogle Scholar
  134. 134.
    Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini N, Gherardi G, et al. Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-L-carnitine therapy. Hypertension. 2009;54(3):567–74.PubMedCrossRefGoogle Scholar
  135. 135.
    Rytting E, Audus KL. Effects of low oxygen levels on the expression and function of transporter OCTN2 in BeWo cells. J Pharm Pharmacol. 2007;59(8):1095–102.PubMedCrossRefGoogle Scholar
  136. 136.
    Rytting E, Audus KL. Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol. 2008;75(3):745–51.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflugers Arch. 2007;455(3):397–429.PubMedCrossRefGoogle Scholar
  138. 138.
    Saborowski M, Kullak-Ublick GA, Eloranta JJ. The human organic cation transporter-1 gene is transactivated by hepatocyte nuclear factor-4alpha. J Pharmacol Exp Ther. 2006;317(2):778–85.PubMedCrossRefGoogle Scholar
  139. 139.
    Saito J, Hirota T, Kikunaga N, Otsubo K, Ieiri I. Interindividual differences in placental expression of the SLC22A2 (OCT2) gene: relationship to epigenetic variations in the 5′-upstream regulatory region. J Pharm Sci. 2011;100(9):3875–83.PubMedCrossRefGoogle Scholar
  140. 140.
    Salsoso R, Guzman-Gutierrez E, Arroyo P, Salomon C, Zambrano S, Ruiz-Armenta MV, et al. Reduced L-carnitine transport in aortic endothelial cells from spontaneously hypertensive rats. PLoS One. 2014;9(2):e90339.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Sayed-Ahmed MM, Aldelemy ML, Al-Shabanah OA, Hafez MM, Al-Hosaini KA, Al-Harbi NO, et al. Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol. 2014;14(3):232–42.PubMedCrossRefGoogle Scholar
  142. 142.
    Schlatter E, Ciarimboli G. Insights into regulatory mechanisms of organic cation transporters. Acta Biomed. 2006;77:30–1.Google Scholar
  143. 143.
    Schlatter E, Mönnich V, Cetinkaya I, Mehrens T, Ciarimboli G, Hirsch JR, et al. The organic cation transporters rOCT1 and hOCT2 are inhibited by cGMP. J Membr Biol. 2002;189:237–44.PubMedCrossRefGoogle Scholar
  144. 144.
    Schlatter E, Klassen P, Massmann V, Holle SK, Guckel D, Edemir B, et al. Mouse organic cation transporter 1 determines properties and regulation of basolateral organic cation transport in renal proximal tubules. Pflugers Arch. 2014;466(8):1581–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Schmidt-Lauber C, Harrach S, Pap T, Fischer M, Victor M, Heitzmann M, et al. Transport mechanisms and their pathology-induced regulation govern tyrosine kinase inhibitor delivery in rheumatoid arthritis. PLoS One. 2012;7(12):e52247.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Schneider R, Meusel M, Betz B, Kersten M, Moller-Ehrlich K, Wanner C, et al. Nitric oxide-induced regulation of renal organic cation transport after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2011;301(5):F997–1004.PubMedCrossRefGoogle Scholar
  147. 147.
    Seith SK, Band MM. Drug dosing in renal disease. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 279–94.Google Scholar
  148. 148.
    Shim WS, Park JH, Ahn SJ, Han L, Jin QR, Li H, et al. Testosterone-independent down-regulation of Oct2 in the kidney medulla from a uranyl nitrate-induced rat model of acute renal failure: effects on distribution of a model organic cation, tetraethylammonium. J Pharm Sci. 2009;98(2):739–47.PubMedCrossRefGoogle Scholar
  149. 149.
    Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, et al. Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res. 2014;20(15):4026–35.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Stachon A, Schlatter E, Hohage H. Dynamic monitoring of organic cation transport processes by fluorescence measurements in LLC-PK1 cells. Cell Physiol Biochem. 1996;6:72–81.CrossRefGoogle Scholar
  151. 151.
    Stachon A, Hohage H, Feidt C, Schlatter E. Characterization of organic cation transport across the apical membrane of proximal tubular cells with the fluorescent dye 4-Di-1-ASP. Cell Physiol Biochem. 1997;7:264–74.CrossRefGoogle Scholar
  152. 152.
    Steen H, Oosting R, Meijer DK. Mechanisms for the uptake of cationic drugs by the liver: a study with tributylmethylammonium (TBuMA). J Pharmacol Exp Ther. 1991;258(2):537–43.PubMedGoogle Scholar
  153. 153.
    Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, et al. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol. 2000;114:175–80.PubMedGoogle Scholar
  154. 154.
    Sugiura T, Kato Y, Tsuji A. Role of SLC xenobiotic transporters and their regulatory mechanisms PDZ proteins in drug delivery and disposition. J Control Release. 2006;116(2):238–46.PubMedCrossRefGoogle Scholar
  155. 155.
    Sugiura T, Kato Y, Wakayama T, Silver DL, Kubo Y, Iseki S, et al. PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice. Drug Metab Dispos. 2008;36(6):1181–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Sweet DH, Miller DS, Pritchard JB. Basolateral localization of organic cation transporter 2 in intact renal proximal tubules. Am J Physiol Renal Physiol. 2000;279:F826–34.PubMedGoogle Scholar
  157. 157.
    Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419:107–11.PubMedCrossRefGoogle Scholar
  158. 158.
    Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, et al. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001;1512:273–84.PubMedCrossRefGoogle Scholar
  159. 159.
    Terada T, Inui K. Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol. 2007;73(3):440–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.PubMedCrossRefGoogle Scholar
  161. 161.
    Thomas MC, Tikellis C, Kantharidis P, Burns WC, Cooper ME, Forbes JM. The role of advanced glycation in reduced organic cation transport associated with experimental diabetes. J Pharmacol Exp Ther. 2004;311(2):456–66.PubMedCrossRefGoogle Scholar
  162. 162.
    Ulu R, Dogukan A, Tuzcu M, Gencoglu H, Ulas M, Ilhan N, et al. Regulation of renal organic anion and cation transporters by thymoquinone in cisplatin induced kidney injury. Food Chem Toxicol. 2012;50(5):1675–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, et al. Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett. 1999;461(3):339–42.PubMedCrossRefGoogle Scholar
  164. 164.
    Van Montfoort JE, Hagenbuch B, Groothuis GM, Koepsell H, Meier PJ, Meijer DK. Drug uptake systems in liver and kidney. Curr Drug Metab. 2003;4(3):185–211.PubMedCrossRefGoogle Scholar
  165. 165.
    Wang C, Uray IP, Mazumdar A, Mayer JA, Brown PH. SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE). Breast Cancer Res Treat. 2012;134(1):101–15.PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Watanabe C, Kato Y, Sugiura T, Kubo Y, Wakayama T, Iseki S, et al. PDZ adaptor protein PDZK2 stimulates transport activity of organic cation/carnitine transporter OCTN2 by modulating cell surface expression. Drug Metab Dispos. 2006;34(11):1927–34.PubMedCrossRefGoogle Scholar
  167. 167.
    Wen G, Ringseis R, Eder K. Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) via a PPRE located in the first intron. Biochem Pharmacol. 2010;79(5):768–76.PubMedCrossRefGoogle Scholar
  168. 168.
    Wilde S, Schlatter E, Koepsell H, Edemir B, Reuter S, Pavenstädt H, et al. Calmodulin-associated post-translational regulation of rat organic cation transporter 2 in the kidney is gender dependent. Cell Mol Life Sci. 2009;66(10):1729–40.PubMedCrossRefGoogle Scholar
  169. 169.
    Wojtal KA, Cee A, Lang S, Gotze O, Fruhauf H, Geier A, et al. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. Am J Physiol Gastrointest Liver Physiol. 2014;307(7):G673–88.PubMedCrossRefGoogle Scholar
  170. 170.
    Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246:589–95.PubMedCrossRefGoogle Scholar
  171. 171.
    Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482–92.PubMedGoogle Scholar
  172. 172.
    Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol. 2012;26(10):407–21.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Yakushiji K, Kai S, Yamauchi M, Kuwajima M, Osada Y, Toshimori K. Expression and distribution of OCTN2 in mouse epididymis and its association with obstructive azoospermia in juvenile visceral steatosis mice. Int J Urol. 2006;13(4):420–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer. 2013;49(6):1479–90.PubMedCrossRefGoogle Scholar
  175. 175.
    Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.PubMedCrossRefGoogle Scholar
  176. 176.
    Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and MATE family). J Pharmacol Exp Ther. 2006;319:879–86.PubMedCrossRefGoogle Scholar
  177. 177.
    Zhang J, Zhou W. Ameliorative effects of SLC22A2 gene polymorphism 808 G/T and cimetidine on cisplatin-induced nephrotoxicity in Chinese cancer patients. Food Chem Toxicol. 2012;50(7):2289–93.PubMedCrossRefGoogle Scholar
  178. 178.
    Zhang L, Brett CM, Giacomini KM. Role of organic cation transporters in drug absorption and elimination. Annu Rev Pharmacol Toxicol. 1998;38:431–60.PubMedCrossRefGoogle Scholar
  179. 179.
    Zhou X, Ringseis R, Wen G, Eder K. Carnitine transporter OCTN2 and carnitine uptake in bovine kidney cells is regulated by peroxisome proliferator-activated receptor beta/delta. Acta Vet Scand. 2014;56:21.PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Zhou X, Wen G, Ringseis R, Eder K. Short communication: the pharmacological peroxisome proliferator-activated receptor alpha agonist WY-14,643 increases expression of novel organic cation transporter 2 and carnitine uptake in bovine kidney cells. J Dairy Sci. 2014;97(1):345–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Experimental Nephrology, Medical Clinic DUniversity of MünsterMünsterGermany

Personalised recommendations