Functional Properties of Organic Cation Transporter OCT1, Binding of Substrates and Inhibitors, and Presumed Transport Mechanism

  • Hermann KoepsellEmail author
  • Thorsten Keller


Organic cation transporters (OCTs) of the SLC22 family mediate absorption, distribution and excretion of cationic drugs. The OCTs belong to the major facilitator superfamily (MFS) containing transporters with 12 pseudosymmetrically arranged transmembrane α-helices. Whereas most transporters of the MFS are substrate selective and secondary active, most transporters of the SLC22 family are polyspecific facilitative diffusion systems. Recently resolved crystal structures of MFS transporters indicate translocation via alternating access surpassing a state with substrate occlusion. After cloning of the rat transporters rOCT1 and rOCT2, the functional properties of these transporters have been investigated employing tracer uptake measurements, electrical measurements, voltage clamp fluorometry, and substrate binding measurements. Extensive mutagenesis studies in rOCT1 were interpreted in frame of tertiary structures that were modeled according to lactose permease which belongs to the MFS. Considering rOCT1 and rOCT2 as OCT prototypes, and assuming that all transporters of the MFS undergo similar interhelical movements during transport, a model for the translocation mechanism of OCTs is proposed. The model suggests that two small organic cations bind to the innermost cleft of the outward-facing conformation of OCTs and that translocation can be performed when either one or two cations are loaded per transporter monomer. With this model recent experimental recent results concerning interaction of ligands at OCTs can be explained that have high biomedical impact for in vitro testing.


Organic cation transporters OCT1 SLC22 MFS Transport mechanism Polyspecificity Mutagenesis Tertiary structure Modeling 


  1. 1.
    Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24:1227–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34:413–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Schmitt BM, Gorbunov D, Schlachtbauer P, Egenberger B, Gorboulev V, Wischmeyer E, Müller T, Koepsell H. Charge-to-substrate ratio during organic cation uptake by rat OCT2 is voltage dependent and altered by exchange of glutamate 448 with glutamine. Am J Physiol Renal Physiol. 2009;296:F709–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Koepsell H, Schmitt BM, Gorboulev V. Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003;150:36–90.PubMedGoogle Scholar
  7. 7.
    Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001;281:F454–68.PubMedGoogle Scholar
  8. 8.
    Chen R, Jonker JW, Nelson JA. Renal organic cation and nucleoside transport. Biochem Pharmacol. 2002;64:185–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H. Monoamine neurotransmitter transport mediated by the polyspecific cation _transporter rOCT1. FEBS Lett. 1996;395:153–6.Google Scholar
  10. 10.
    Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996;271:32599–604.PubMedCrossRefGoogle Scholar
  11. 11.
    Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem. 1997;272:31953–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Budiman T, Bamberg E, Koepsell H, Nagel G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem. 2000;275:29413–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Keller T, Elfeber M, Gorboulev V, Reiländer H, Koepsell H. Purification and functional reconstitution of the rat organic cation transporter OCT1. Biochemistry. 2005;44:12253–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Schmitt BM, Koepsell H. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem. 2005;280:24481–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A. 2003;100:11753–8.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl¯ channels. Nature. 2004;427:803–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415:287–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller C. ClC chloride channels viewed through a transporter lens. Nature. 2006;440:484–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966;211:969–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Law CJ, Maloney PC, Wang D-N. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol. 2008;62:289–305.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Volk C, Gorboulev V, Budiman T, Nagel G, Koepsell H. Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Mol Pharmacol. 2003;64:1037–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N. Structure of a fucose transporter in an outward-open conformation. Nature. 2010;467:734–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature. 2012;490:361–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Hirai T, Heymann JAW, Shi D, Sarker R, Maloney PC, Subramaniam S. Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol. 2002;9:597–600.PubMedGoogle Scholar
  25. 25.
    Yin Y, Jensen MØ, Tajkhorshid E, Schulten K. Sugar binding and protein conformational changes in lactose permease. Biophys J. 2006;91:3972–85.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, Shi Y. Structure and mechanism of a nitrate transporter. Cell Rep. 2013;3:716–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature. 2013;496:533–6.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ, Baldwin SA, Iwata S. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 2011;30:417–26.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003;301:610–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Mirza O, Guan L, Verner G, Iwata S, Kaback HR. Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J. 2006;25:1177–83.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Guan L, Mirza O, Verner G, Iwata S, Kaback HR. Structural determination of wild-type lactose permease. Proc Natl Acad Sci U S A. 2007;104:15294–8.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci U S A. 2011;108:9361–6.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003;301:616–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 2012;31:3411–21.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Guettou F, Quistgaard EM, Tresaugues L, Moberg P, Jegerschold C, Zhu L, Jong AJ, Nordlund P, Low C. Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep. 2013;14:804–10.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, Ishitani R, Nureki O. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci U S A. 2013;110:11343–8.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zheng H, Wisedchaisri G, Gonen T. Crystal structure of a nitrate/nitrite exchanger. Nature. 2013;497:647–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature. 2014;507:73–7.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Radestock S, Forrest LR. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol. 2011;407:698–715.PubMedCrossRefGoogle Scholar
  40. 40.
    Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R. Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol. 2000;58:624–32.PubMedGoogle Scholar
  41. 41.
    Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Klingenberg M. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry. 2005;44:8563–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Klingenberg M. Transport catalysis. Biochim Biophys Acta. 2006;1757:1229–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorboulev V, Volk C, Arndt P, Akhoundova A, Koepsell H. Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol Pharmacol. 1999;56:1254–61.PubMedGoogle Scholar
  45. 45.
    Popp C, Gorboulev V, Müller TD, Gorbunov D, Shatskaya N, Koepsell H. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol Pharmacol. 2005;67:1600–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Gorboulev V, Shatskaya N, Volk C, Koepsell H. Subtype-specific affinity for corticosterone of rat organic cation transporters rOCT1 and rOCT2 depends on three amino acids within the substrate binding region. Mol Pharmacol. 2005;67:1612–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Volk C, Gorboulev V, Kotzsch A, Müller TD, Koepsell H. Five amino acids in the innermost cavity of the substrate binding cleft of organic cation transporter 1 interact with extracellular and intracellular corticosterone. Mol Pharmacol. 2009;76:275–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Sturm A, Gorboulev V, Gorbunov D, Keller T, Volk C, Schmitt BM, Schlachtbauer P, Ciarimboli G, Koepsell H. Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. Am J Physiol Renal Physiol. 2007;293:F767–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR. The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett. 2003;555:96–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Gorbunov D, Gorboulev V, Shatskaya N, Mueller T, Bamberg E, Friedrich T, Koepsell H. High-affinity cation binding to organic cation transporter 1 induces movement of helix 11 and blocks transport after mutations in a modeled interaction domain between two helices. Mol Pharmacol. 2008;73:50–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Ambudkar SV, Anantharam V, Maloney PC. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer. J Biol Chem. 1990;265:12287–92.PubMedGoogle Scholar
  52. 52.
    Sahin-Toth M, Lawrence MC, Kaback HR. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci U S A. 1994;91:5421–5.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Hou Z, Cherian C, Drews J, Wu J, Matherly LH. Identification of the minimal functional unit of the homo-oligomeric human reduced folate carrier. J Biol Chem. 2010;285:4732–40.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Veenhoff LM, Heuberger EH, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 2001;20:3056–62.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hong M, Xu W, Yoshida T, Tanaka K, Wolff DJ, Zhou F, Inouye M, You G. Human organic anion transporter hOAT1 forms homooligomers. J Biol Chem. 2005;280:32285–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Keller T, Schwarz D, Bernhard F, Dotsch V, Hunte C, Gorboulev V, Koepsell H. Cell free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry. 2008;47:4552–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, Wirth C, Koppatz S, Dötsch V, Hunte C, Sitte HH, Koepsell H. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem. 2011;286:37874–86.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Brast S, Grabner A, Sucic S, Sitte HH, Hermann E, Pavenstadt H, Schlatter E, Ciarimboli G. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 2012;26:976–86.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Duan P, Li S, You G. Transmembrane peptide as potent inhibitor of oligomerization and function of human organic anion transporter 1. Mol Pharmacol. 2011;79:569–74.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Egenberger B, Gorboulev V, Keller T, Gorbunov D, Gottlieb N, Geiger D, Mueller TD, Koepsell H. A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1. J Biol Chem. 2012;287:31561–73.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Pelis RM, Dangprapai Y, Cheng Y, Zhang X, Terpstra J, Wright SH. Functional significance of conserved cysteines in the human organic cation transporter 2. Am J Physiol Renal Physiol. 2012;303:F313–20.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc. 2009;131:17777–9.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Roos C, Zocher M, Muller D, Munch D, Schneider T, Sahl HG, Scholz F, Wachtveit J, Ma Y, Proverbio D, Henrich E, Dotsch V, Bernhard F. Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim Biophys Acta. 2012;1818:3098–106.PubMedCrossRefGoogle Scholar
  64. 64.
    Ciarimboli G, Koepsell H, Iordanova M, Gorboulev V, Dürner B, Lang D, Edemir B, Schröter R, Van Le T, Schlatter E. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 2015;16:1562–70.CrossRefGoogle Scholar
  65. 65.
    Grabner A, Brast S, Sucic S, Bierer S, Hirsch B, Pavenstädt H, Sitte HH, Schlatter E, Ciarimboli G. LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment. Cell Mol Life Sci. 2011;68:4079–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor-Anglada M, Koepsell H, Martinez-Picado J. Transport of lamivudine [(-)-b-L-2′,3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:252–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2010;201:105–67.CrossRefGoogle Scholar
  68. 68.
    Thevenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate Cd. Mol Pharm. 2013;10:3045–56.PubMedCrossRefGoogle Scholar
  69. 69.
    Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346:300–10.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-InstituteUniversity of WürzburgWürzburgGermany

Personalised recommendations