Introduction to the Cellular Transport of Organic Cations

  • Giuliano CiarimboliEmail author


Organic cations (OCs) are substances of endogenous and exogenous origin to which belong important neurotransmitters such as histamine and serotonin and also drugs such as metformin. Because OCs are positively charged they need membrane transporters to permeate the plasma membrane. Membrane transporters which translocate OCs according to their electrochemical gradient belong to the Solute Carrier (SLC) families 22 (organic cation transporters (OCT) 1–3, and organic cation transporters novel (OCTN) 1–2) and 47 (multidrug and toxin extrusion (MATE) 1–2). This chapter collects the information on expression and function of these transporters present in the literature, comparing the characteristics of human and rodent transporters. These data show that OCTs play an important physiological role for neurotransmitter balance in the body. Moreover, they are also important uptake routes for intracellular drug delivery and, considering their high expression in excretory organs, together with MATEs are responsible for drug excretion. For this reason, OCTs and MATEs can be important determinants of drug efficacies and also toxicities. OCTNs are transporters involved in the cellular uptake of substances, which are important in cell metabolism and in signal transmission, such as ergothioneine, carnitine and acetylcholine. Even though the expression and function of orthologs of transporters for OCs is generally similar, still there are important differences that have to be considered for a proper interpretation of translational studies. Paralogs of transporters for organic cations often display similar characteristics, however they show also important differences e.g. with regard to interaction with substrates and to regulation. Other important functional aspects of transporters for organic cations, such as the molecular correlates of polyspecificity, regulation, interaction with drugs, genetic variations, role in the central nervous system, and distribution in the plants are discussed in the other sections of this book.


Organic cations Transporters Neurotransmitters Drugs Plasma membrane 



The support of the Deutsche Forschungsgemeinschaft (DFG CI 107/4-1 to 3), of the “Innovative Medizinische Forschung” (CI 120437) and of the “Interdisziplinäres Zentrum für Klinische Forschung (IZKF)” (CIA02/013/13), both at the Medical Faculty of the University of Münster for the studies of G.C. and E.S. mentioned in their respective chapters is also acknowledged.


  1. 1.
    Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev. 2000;64(2):354–411.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 2004;13(7):1832–40.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74. doi: 10.1517/17425255.2011.547474.PubMedCrossRefGoogle Scholar
  4. 4.
    Ren Q, Paulsen IT. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput Biol. 2005;1(3):e27.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 2004;447(5):465–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Schlessinger A, Yee SW, Sali A, Giacomini KM. SLC classification: an update. Clin Pharmacol Ther. 2013;94(1):19–23. doi: 10.1038/clpt.2013.73.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hoglund PJ, Nordstrom KJ, Schioth HB, Fredriksson R. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol. 2011;28(4):1531–41. doi: 10.1093/molbev/msq350.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Thevenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, et al. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd(2+). Mol Pharm. 2013;10(8):3045–56. doi: 10.1021/mp400113d.PubMedCrossRefGoogle Scholar
  9. 9.
    Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477–84.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Filipski KK, Loos WJ, Verweij J, Sparreboom A. Interaction of Cisplatin with the human organic cation transporter 2. Clin Cancer Res. 2008;14(12):3875–80. doi: 10.1158/1078-0432.CCR-07-4793.PubMedCrossRefGoogle Scholar
  11. 11.
    Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289(2):768–73.PubMedGoogle Scholar
  12. 12.
    Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273(32):20378–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Massmann V, Edemir B, Schlatter E, Al-Monajjed R, Harrach S, Klassen P, et al. The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3. Pflugers Arch. 2014;466(3):517–27. doi: 10.1007/s00424-013-1335-8.PubMedCrossRefGoogle Scholar
  16. 16.
    Sala-Rabanal M, Li DC, Dake GR, Kurata HT, Inyushin M, Skatchkov SN, et al. Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol Pharm. 2013;10(4):1450–8. doi: 10.1021/mp400024d.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ramani D, De Bandt JP, Cynober L. Aliphatic polyamines in physiology and diseases. Clin Nutr. 2014;33(1):14–22. doi: 10.1016/j.clnu.2013.09.019.PubMedCrossRefGoogle Scholar
  18. 18.
    Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem. 2008;51(19):5932–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen Y, Zhang S, Sorani M, Giacomini KM. Transport of paraquat by human organic cation transporters and multidrug and toxic compound extrusion family. J Pharmacol Exp Ther. 2007;322(2):695–700.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee WK, Reichold M, Edemir B, Ciarimboli G, Warth R, Koepsell H, et al. Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule. Am J Physiol Renal Physiol. 2009;296(6):F1504–13. doi: 10.1152/ajprenal.90754.2008.PubMedCrossRefGoogle Scholar
  21. 21.
    Schmidt-Lauber C, Harrach S, Pap T, Fischer M, Victor M, Heitzmann M, et al. Transport mechanisms and their pathology-induced regulation govern tyrosine kinase inhibitor delivery in rheumatoid arthritis. PLoS One. 2012;7(12):e52247. doi: 10.1371/journal.pone.0052247.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schröter R, et al. Characterization of regulatory mechanisms and states of human organic cation transporter 2. Am J Physiol Cell Physiol. 2006;290(6):C1521–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Ciarimboli G, Struwe K, Arndt P, Gorboulev V, Koepsell H, Schlatter E, et al. Regulation of the human organic cation transporter hOCT1. J Cell Physiol. 2004;201(3):420–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Jouan E, Le VM, Denizot C, Da VG, Fardel O. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam Clin Pharmacol. 2014;28(1):65–77. doi: 10.1111/j.1472-8206.2012.01071.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A, et al. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int. 2013;2013:692071. doi: 10.1155/2013/692071.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol. 2003;23(21):7902–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One. 2011;6(7):e22163. doi: 10.1371/journal.pone.0022163.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Jacobsson JA, Haitina T, Lindblom J, Fredriksson R. Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics. 2007;90(5):595–609. doi: 10.1016/j.ygeno.2007.03.017.PubMedCrossRefGoogle Scholar
  29. 29.
    Koepsell H, Endou H. The SLC22 drug transporter family. Pflugers Arch. 2004;447(5):666–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Koepsell H, Schmitt BM, Gorboulev V. Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003;150:36–90.PubMedGoogle Scholar
  31. 31.
    Ciarimboli G, Schlatter E. Regulation of organic cation transport. Pflugers Arch. 2005;449:423–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun. 2003;300(2):333–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Eraly SA, Monte JC, Nigam SK. Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics. 2004;18(1):12–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Verhaagh S, Schweifer N, Barlow DP, Zwart R. Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics. 1999;55(2):209–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20. doi: 10.1126/science.1163802.PubMedCrossRefGoogle Scholar
  36. 36.
    Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005;21(8):457–65. doi: 10.1016/j.tig.2005.06.008.PubMedCrossRefGoogle Scholar
  37. 37.
    Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 2011;469(7331):534–8. doi: 10.1038/nature09651.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A. 2006;103(17):6623–8. doi: 10.1073/pnas.0511031103.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Zhang X, Wright SH. MATE1 has an external COOH terminus, consistent with a 13-helix topology. Am J Physiol Renal Physiol. 2009;297(2):F263–71. doi: 10.1152/ajprenal.00123.2009.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6. doi: 10.1038/jhg.2008.1.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang X, He X, Baker J, Tama F, Chang G, Wright SH. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem. 2012;287(33):27971–82. doi: 10.1074/jbc.M112.386979.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372(6506):549–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–21.PubMedGoogle Scholar
  45. 45.
    Terashita S, Dresser MJ, Zhang L, Gray AT, Yost SC, Giacomini KM. Molecular cloning and functional expression of a rabbit renal organic cation transporter. Biochim Biophys Acta. 1998;1369(1):1–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Schweifer N, Barlow DP. The Lx1 gene maps to mouse chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transporters. Mamm Genome. 1996;7(10):735–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Green RM, Lo K, Sterritt C, Beier DR. Cloning and functional expression of a mouse liver organic cation transporter. Hepatology. 1999;29(5):1556–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Mooslehner KA, Allen ND. Cloning of the mouse organic cation transporter 2 gene, Slc22a2, from an enhancer-trap transgene integration locus. Mamm Genome. 1999;10(3):218–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu AS, Nigam SK. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol. 2000;278(4):F635–43.PubMedGoogle Scholar
  50. 50.
    Alnouti Y, Petrick JS, Klaassen CD. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos. 2006;34(3):477–82.PubMedGoogle Scholar
  51. 51.
    Schmitt A, Mossner R, Gossmann A, Fischer IG, Gorboulev V, Murphy DL, et al. Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J Neurosci Res. 2003;71(5):701–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Holle SK, Ciarimboli G, Edemir B, Neugebauer U, Pavenstädt H, Schlatter E. Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch. 2011;462(2):359–69. doi: 10.1007/s00424-011-0969-7.PubMedCrossRefGoogle Scholar
  53. 53.
    Andre P, Saubamea B, Cochois-Guegan V, Marie-Claire C, Cattelotte J, Smirnova M, et al. Transport of biogenic amine neurotransmitters at the mouse blood-retina and blood-brain barriers by uptake1 and uptake2. J Cereb Blood Flow Metab. 2012;32(11):1989–2001. doi: 10.1038/jcbfm.2012.109.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wu KC, Lu YH, Peng YH, Tsai TF, Kao YH, Yang HT, et al. Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice. J Cereb Blood Flow Metab. 2014. doi: 10.1038/jcbfm.2014.162.Google Scholar
  55. 55.
    Ito N, Ito K, Ikebuchi Y, Kito T, Miyata H, Toyoda Y, et al. Organic cation transporter/solute carrier family 22a is involved in drug transfer into milk in mice. J Pharm Sci. 2014;103(10):3342–8. doi: 10.1002/jps.24138.PubMedCrossRefGoogle Scholar
  56. 56.
    Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Han TK, Everett RS, Proctor WR, Ng CM, Costales CL, Brouwer KL, et al. Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell monolayers and enterocytes. Mol Pharmacol. 2013;84(2):182–9. doi: 10.1124/mol.112.084517.PubMedCrossRefGoogle Scholar
  58. 58.
    Schlatter E, Klassen P, Massmann V, Holle SK, Guckel D, Edemir B, et al. Mouse organic cation transporter 1 determines properties and regulation of basolateral organic cation transport in renal proximal tubules. Pflugers Arch. 2013. doi: 10.1007/s00424-013-1395-9.PubMedGoogle Scholar
  59. 59.
    Kummer W, Wiegand S, Akinci S, Wessler I, Schinkel AH, Wess J, et al. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir Res. 2006;7:65.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Lips KS, Wunsch J, Zarghooni S, Bschleipfer T, Schukowski K, Weidner W, et al. Acetylcholine and molecular components of its synthesis and release machinery in the urothelium. Eur Urol. 2007;51(4):1042–53. doi: 10.1016/j.eururo.2006.10.028.PubMedCrossRefGoogle Scholar
  61. 61.
    Sinclair CJ, Chi KD, Subramanian V, Ward KL, Green RM. Functional expression of a high affinity mammalian hepatic choline/organic cation transporter. J Lipid Res. 2000;41(11):1841–8.PubMedGoogle Scholar
  62. 62.
    Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, et al. Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun. 2002;296(3):644–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW, et al. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol. 2001;21(16):5471–7.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol. 2003;63(4):844–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302(2):510–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Jang EH, Kim HK, Park CS, Kang JH. Increased expression of hepatic organic cation transporter 1 and hepatic distribution of metformin in high-fat diet-induced obese mice. Drug Metab Pharmacokinet. 2010;25(4):392–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Muller O, Schalla C, Scheibner J, Stange EF, Fuchs M. Expression of liver plasma membrane transporters in gallstone-susceptible and gallstone-resistant mice. Biochem J. 2002;361(Pt 3):673–9.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Nie W, Sweetser S, Rinella M, Green RM. Transcriptional regulation of murine Slc22a1 (Oct1) by peroxisome proliferator agonist receptor-alpha and -gamma. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G207–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Koehler MR, Gorboulev V, Koepsell H, Steinlein C, Schmid M. Roct1, a rat polyspecific transporter gene for the excretion of cationic drugs, maps to chromosome 1q11-12. Mamm Genome. 1996;7(3):247–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.PubMedGoogle Scholar
  71. 71.
    Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, et al. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol. 2000;279(4):F679–87.PubMedGoogle Scholar
  72. 72.
    Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001;18(11):1528–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Slitt AL, Cherrington NJ, Hartley DP, Leazer TM, Klaassen CD. Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug Metab Dispos. 2002;30(2):212–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, Koepsell H. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun. 1998;248(3):673–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol. 2005;33(1):79–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, et al. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996;271(51):32599–604.PubMedCrossRefGoogle Scholar
  77. 77.
    Martel F, Vetter T, Russ H, Gründemann D, Azevedo I, Koepsell H, et al. Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch Pharmacol. 1996;354(3):320–6.PubMedGoogle Scholar
  78. 78.
    Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem. 1997;272(51):31953–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Breidert T, Spitzenberger F, Gründemann D, Schomig E. Catecholamine transport by the organic cation transporter type 1 (OCT1). Br J Pharmacol. 1998;125(1):218–24.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Chen R, Nelson JA. Role of organic cation transporters in the renal secretion of nucleosides. Biochem Pharmacol. 2000;60(2):215–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, et al. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001;281(3):F454–68.PubMedGoogle Scholar
  82. 82.
    Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, et al. Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 1996;395(2–3):153–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, et al. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem. 2011;286(43):37874–86. doi: 10.1074/jbc.M111.289330.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Zhang L, Dresser MJ, Chun JK, Babbitt PC, Giacomini KM. Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J Biol Chem. 1997;272(26):16548–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Koehler MR, Wissinger B, Gorboulev V, Koepsell H, Schmid M. The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26. Cytogenet Cell Genet. 1997;79(3–4):198–200.PubMedCrossRefGoogle Scholar
  86. 86.
    Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, et al. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol. 2001;134(5):951–6.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Moreno-Navarrete JM, Ortega FJ, Rodriguez-Hermosa JI, Sabater M, Pardo G, Ricart W, et al. OCT1 Expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes. 2011;60(1):168–76. doi: 10.2337/db10-0805.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Bednarczyk D, Ekins S, Wikel JH, Wright SH. Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003;63(3):489–98.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang L, Gorset W, Dresser MJ, Giacomini KM. The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther. 1999;288(3):1192–8.PubMedGoogle Scholar
  90. 90.
    Hendrickx R, Johansson JG, Lohmann C, Jenvert RM, Blomgren A, Borjesson L, et al. Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2. J Med Chem. 2013;56(18):7232–42. doi: 10.1021/jm400966v.PubMedCrossRefGoogle Scholar
  91. 91.
    Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.PubMedCrossRefGoogle Scholar
  92. 92.
    Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, et al. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci U S A. 2014;111(27):9983–8. doi: 10.1073/pnas.1314939111.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Zhang L, Schaner ME, Giacomini KM. Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998;286(1):354–61.PubMedGoogle Scholar
  94. 94.
    Hayer M, Bonisch H, Bruss M. Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet. 1999;63(Pt 6):473–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Li L, Tu M, Yang X, Sun S, Wu X, Zhou H, et al. The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity. Drug Metab Dispos. 2014;42(7):1227–34. doi: 10.1124/dmd.113.056689.PubMedCrossRefGoogle Scholar
  96. 96.
    Tu M, Li L, Lei H, Ma Z, Chen Z, Sun S, et al. Involvement of organic cation transporter 1 and CYP3A4 in retrorsine-induced toxicity. Toxicology. 2014;322:34–42. doi: 10.1016/j.tox.2014.04.007.PubMedCrossRefGoogle Scholar
  97. 97.
    Courousse T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, et al. Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3beta signaling. Mol Psychiatry. 2014. doi: 10.1038/mp.2014.86.PubMedGoogle Scholar
  98. 98.
    Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–80. Pubmed.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sprowl JA, Ciarimboli G, Lancaster CS, Giovinazzo H, Gibson AA, Du G, et al. Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci U S A. 2013;110(27):11199–204. doi: 10.1073/pnas.1305321110.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Miakotina OL, Agassandian M, Shi L, Look DC, Mallampalli RK. Adenovirus stimulates choline efflux by increasing expression of organic cation transporter-2. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L93–102.PubMedCrossRefGoogle Scholar
  101. 101.
    Ciarimboli G, Lancaster CS, Schlatter E, Franke RM, Sprowl JA, Pavenstädt H, et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res. 2012;18(4):1101–8. doi: 10.1158/1078-0432.CCR-11-2503.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Soodvilai S. Renal organic cation transporters (OCTs) mediate basolateral cadmium uptake involving cadmium-induced cytotoxicity. Drug Metab Rev. 2011;43:84.Google Scholar
  103. 103.
    Okuda M, Saito H, Urakami Y, Takano M, Inui K. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun. 1996;224(2):500–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Gründemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, et al. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998;273(47):30915–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, et al. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol. 2000;114(3):175–80.PubMedGoogle Scholar
  106. 106.
    Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276(45):41611–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Nakata T, Matsui T, Kobayashi K, Kobayashi Y, Anzai N. Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience. 2013;252:212–21. doi: 10.1016/j.neuroscience.2013.08.011.PubMedCrossRefGoogle Scholar
  108. 108.
    Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, et al. Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci. 2006;101(1):24–30.PubMedCrossRefGoogle Scholar
  109. 109.
    Volk C, Gorboulev V, Budiman T, Nagel G, Koepsell H. Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Mol Pharmacol. 2003;64(5):1037–47.PubMedCrossRefGoogle Scholar
  110. 110.
    Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol. 2005;70(12):1823–31.PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang X, Evans KK, Wright SH. Molecular cloning of rabbit organic cation transporter rbOCT2 and functional comparisons with rbOCT1. Am J Physiol Renal Physiol. 2002;283(1):F124–33.PubMedCrossRefGoogle Scholar
  112. 112.
    Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol. 2000;278(6):F853–66.PubMedGoogle Scholar
  113. 113.
    Pelis RM, Suhre WM, Wright SH. Functional influence of N-glycosylation in OCT2-mediated tetraethylammonium transport. Am J Physiol Renal Physiol. 2006;290(5):F1118–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Kaewmokul S, Chatsudthipong V, Evans KK, Dantzler WH, Wright SH. Functional mapping of rbOCT1 and rbOCT2 activity in the S2 segment of rabbit proximal tubule. Am J Physiol Renal Physiol. 2003;285(6):F1149–59.PubMedCrossRefGoogle Scholar
  115. 115.
    Wright SH, Evans KK, Zhang X, Cherrington NJ, Sitar DS, Dantzler WH. Functional map of TEA transport activity in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol. 2004;287(3):F442–51.PubMedCrossRefGoogle Scholar
  116. 116.
    Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett. 2011;204(1):38–42. doi: 10.1016/j.toxlet.2011.04.005.PubMedCrossRefGoogle Scholar
  117. 117.
    Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13(4):866–74.PubMedGoogle Scholar
  118. 118.
    Urakami Y, Akazawa M, Saito H, Okuda M, Inui K. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002;13(7):1703–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Gründemann D, Schomig E. Gene structures of the human non-neuronal monoamine transporter EMT and OCT2. Hum Genet. 2000;106:627–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.PubMedGoogle Scholar
  121. 121.
    Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:90–8. doi: 10.1016/j.pnpbp.2014.03.005.PubMedCrossRefGoogle Scholar
  122. 122.
    Sun S, Wang K, Lei H, Li L, Tu M, Zeng S, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:1–6. doi: 10.1016/j.pnpbp.2013.11.005.PubMedCrossRefGoogle Scholar
  123. 123.
    Muller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–60.PubMedCrossRefGoogle Scholar
  124. 124.
    Minuesa G, Purcet S, Erkizia I, Molina-Arcas M, Bofill M, Izquierdo-Useros N, et al. Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther. 2008;324(2):558–67. doi: 10.1124/jpet.107.131482.PubMedCrossRefGoogle Scholar
  125. 125.
    Winter TN, Elmquist WF, Fairbanks CA. OCT2 and MATE1 provide bidirectional agmatine transport. Mol Pharm. 2011;8(1):133–42. doi: 10.1021/mp100180a.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Dos Santos Pereira JN, Tadjerpisheh S, Abed MA, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247–58. doi: 10.1208/s12248-014-9649-9.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Yasujima T, Ohta K, Inoue K, Yuasa H. Characterization of human OCT1-mediated transport of DAPI as a fluorescent probe substrate. J Pharm Sci. 2011;100(9):4006–12. doi: 10.1002/jps.22548.PubMedCrossRefGoogle Scholar
  128. 128.
    Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos. 2009;37(2):424–30. doi: 10.1124/dmd.108.024083.PubMedCrossRefGoogle Scholar
  129. 129.
    Kang HJ, Lee SS, Lee CH, Shim JC, Shin HJ, Liu KH, et al. Neurotoxic pyridinium metabolites of haloperidol are substrates of human organic cation transporters. Drug Metab Dispos. 2006;34(7):1145–51. doi: 10.1124/dmd.105.009126.PubMedCrossRefGoogle Scholar
  130. 130.
    Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45. doi: 10.1182/blood-2003-12-4276.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther. 2008;83(2):258–64. doi: 10.1038/sj.clpt.6100268.PubMedCrossRefGoogle Scholar
  132. 132.
    Gupta S, Wulf G, Henjakovic M, Koepsell H, Burckhardt G, Hagos Y. Human organic cation transporter 1 is expressed in lymphoma cells and increases susceptibility to irinotecan and paclitaxel. J Pharmacol Exp Ther. 2012;341(1):16–23. doi: 10.1124/jpet.111.190561.PubMedCrossRefGoogle Scholar
  133. 133.
    Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Transport of lamivudine [(-)-beta-L-2′,3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329(1):252–61. doi: 10.1124/jpet.108.146225.PubMedCrossRefGoogle Scholar
  134. 134.
    Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res. 2002;19(8):1244–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Tu M, Sun S, Wang K, Peng X, Wang R, Li L, et al. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology. 2013;311(3):225–30. doi: 10.1016/j.tox.2013.06.009.PubMedCrossRefGoogle Scholar
  136. 136.
    Tzvetkov MV, Dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmoller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol. 2013;86(5):666–78. doi: 10.1016/j.bcp.2013.06.019.PubMedCrossRefGoogle Scholar
  137. 137.
    Wenge B, Geyer J, Bonisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(2):203–8. doi: 10.1007/s00210-010-0590-x.PubMedCrossRefGoogle Scholar
  138. 138.
    Glaeser H, Bujok K, Schmidt I, Fromm MF, Mandery K. Organic anion transporting polypeptides and organic cation transporter 1 contribute to the cellular uptake of the flavonoid quercetin. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(9):883–91. doi: 10.1007/s00210-014-1000-6.PubMedCrossRefGoogle Scholar
  139. 139.
    Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315(3):1288–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother. 2013;57(11):5612–8. doi: 10.1128/AAC.01421-13.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Minematsu T, Iwai M, Umehara K, Usui T, Kamimura H. Characterization of human organic cation transporter 1 (OCT1/SLC22A1)- and OCT2 (SLC22A2)-mediated transport of 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)- 4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide), a novel small molecule survivin suppressant. Drug Metab Dispos. 2010;38(1):1–4. doi: 10.1124/dmd.109.028142.PubMedCrossRefGoogle Scholar
  142. 142.
    Arimany-Nardi C, Errasti-Murugarren E, Minuesa G, Martinez-Picado J, Gorboulev V, Koepsell H, et al. Nucleoside transporters and human organic cation transporter 1 determine the cellular handling of DNA-methyltransferase inhibitors. Br J Pharmacol. 2014;171(16):3868–80. doi: 10.1111/bph.12748.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Strobel J, Muller F, Zolk O, Endress B, Konig J, Fromm MF, et al. Transport of asymmetric dimethylarginine (ADMA) by cationic amino acid transporter 2 (CAT2), organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1). Amino Acids. 2013;45(4):989–1002. doi: 10.1007/s00726-013-1556-3.PubMedCrossRefGoogle Scholar
  144. 144.
    Urakami Y, Kimura N, Okuda M, Inui K. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21(6):976–81.PubMedCrossRefGoogle Scholar
  145. 145.
    Taubert D, Grimberg G, Stenzel W, Schomig E. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons. PLoS One. 2007;2:e385.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Ito S, Kusuhara H, Kumagai Y, Moriyama Y, Inoue K, Kondo T, et al. N-methylnicotinamide is an endogenous probe for evaluation of drug-drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2-K). Clin Pharmacol Ther. 2012;92(5):635–41. doi: 10.1038/clpt.2012.138.PubMedCrossRefGoogle Scholar
  147. 147.
    Song IS, Lee DY, Shin MH, Kim H, Ahn YG, Park I, et al. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One. 2012;7(5):e36637. doi: 10.1371/journal.pone.0036637.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Gründemann D, Hahne C, Berkels R, Schömig E. Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther. 2003;304(2):810–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Kimura N, Masuda S, Katsura T, Inui K. Transport of guanidine compounds by human organic cation transporters, hOCT1 and hOCT2. Biochem Pharmacol. 2009;77(8):1429–36. doi: 10.1016/j.bcp.2009.01.010.PubMedCrossRefGoogle Scholar
  150. 150.
    Ciarimboli G, Schroter R, Neugebauer U, Vollenbroker B, Gabriels G, Brzica H, et al. Kidney transplantation down-regulates expression of organic cation transporters, which translocate beta-blockers and fluoroquinolones. Mol Pharm. 2013;10(6):2370–80. doi: 10.1021/mp4000234.PubMedCrossRefGoogle Scholar
  151. 151.
    Barendt WM, Wright SH. The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem. 2002;277(25):22491–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Li X, Sun X, Chen J, Lu Y, Zhang Y, Wang C, et al. Investigation of the role of organic cation transporter 2 (OCT2) in the renal transport of guanfacine, a selective alpha-adrenoreceptor agonist. Xenobiotica. 2015;45(1):88–94. doi: 10.3109/00498254.2014.949904.PubMedCrossRefGoogle Scholar
  153. 153.
    Ciarimboli G, Holle SK, Vollenbroker B, Hagos Y, Reuter S, Burckhardt G, et al. New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2. Mol Pharm. 2011;8(1):270–9. doi: 10.1021/mp100329u.PubMedCrossRefGoogle Scholar
  154. 154.
    Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 2006;66(17):8847–57.PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Diao L, Shu Y, Polli JE. Uptake of pramipexole by human organic cation transporters. Mol Pharm. 2010;7(4):1342–7. doi: 10.1021/mp100036b.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, et al. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res. 2014;31(1):136–47. doi: 10.1007/s11095-013-1144-y.PubMedCrossRefGoogle Scholar
  157. 157.
    Gründemann D, Schechinger B, Rappold GA, Schömig E. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998;1(5):349–51.PubMedCrossRefGoogle Scholar
  158. 158.
    Stegaev V, Nies AT, Porola P, Mieliauskaite D, Sanchez-Jimenez F, Urdiales JL, et al. Histamine transport and metabolism are deranged in salivary glands in Sjogren’s syndrome. Rheumatology (Oxford). 2013;52(9):1599–608. doi: 10.1093/rheumatology/ket188.CrossRefGoogle Scholar
  159. 159.
    Gründemann D, Liebich G, Kiefer N, Koster S, Schomig E. Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol. 1999;56(1):1–10.PubMedGoogle Scholar
  160. 160.
    Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, et al. Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol. 2004;499(1–2):45–51.PubMedCrossRefGoogle Scholar
  161. 161.
    Solbach TF, Grube M, Fromm MF, Zolk O. Organic cation transporter 3: expression in failing and nonfailing human heart and functional characterization. J Cardiovasc Pharmacol. 2011;58(4):409–17. doi: 10.1097/FJC.0b013e3182270783.PubMedCrossRefGoogle Scholar
  162. 162.
    Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419(1):107–11.PubMedCrossRefGoogle Scholar
  163. 163.
    Tamai I, Nakanishi T, Kobayashi D, China K, Kosugi Y, Nezu J, et al. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol Pharm. 2004;1(1):57–66.PubMedCrossRefGoogle Scholar
  164. 164.
    McBride BF, Yang T, Liu K, Urban TJ, Giacomini KM, Kim RB, et al. The organic cation transporter, OCTN1, expressed in the human heart, potentiates antagonism of the HERG potassium channel. J Cardiovasc Pharmacol. 2009;54(1):63–71. doi: 10.1097/FJC.0b013e3181abc288.PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Garrett Q, Xu S, Simmons PA, Vehige J, Flanagan JL, Willcox MD. Expression and localization of carnitine/organic cation transporter OCTN1 and OCTN2 in ocular epithelium. Invest Ophthalmol Vis Sci. 2008;49(11):4844–9. doi: 10.1167/iovs.07-1528.PubMedCrossRefGoogle Scholar
  166. 166.
    Alcorn J, Lu X, Moscow JA, McNamara PJ. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J Pharmacol Exp Ther. 2002;303(2):487–96. doi: 10.1124/jpet.102.038315.PubMedCrossRefGoogle Scholar
  167. 167.
    Lamhonwah AM, Tein I. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria. Biochem Biophys Res Commun. 2006;345(4):1315–25. doi: 10.1016/j.bbrc.2006.05.026.PubMedCrossRefGoogle Scholar
  168. 168.
    Pochini L, Scalise M, Galluccio M, Indiveri C. Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system. Life Sci. 2012;91(21–22):1013–6. doi: 10.1016/j.lfs.2012.04.027.PubMedCrossRefGoogle Scholar
  169. 169.
    Grundemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci U S A. 2005;102(14):5256–61.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2008;83(3):416–21. doi: 10.1038/sj.clpt.6100271.PubMedCrossRefGoogle Scholar
  171. 171.
    Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2010;7(1):187–95. doi: 10.1021/mp900206j.PubMedCrossRefGoogle Scholar
  172. 172.
    Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246(3):589–95.PubMedCrossRefGoogle Scholar
  173. 173.
    Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, et al. Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood-brain barrier. J Neurochem. 2001;79(5):959–69.PubMedCrossRefGoogle Scholar
  174. 174.
    Shao D, Massoud E, Anand U, Parikh A, Cowley E, Clarke D, et al. Organic cation transporters in human nasal primary culture: expression and functional activity. Ther Deliv. 2013;4(4):439–51. doi: 10.4155/tde.13.10.PubMedCrossRefGoogle Scholar
  175. 175.
    Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, et al. Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos. 2007;35(4):590–4. doi: 10.1124/dmd.106.013342.PubMedCrossRefGoogle Scholar
  176. 176.
    Xuan W, Lamhonwah AM, Librach C, Jarvi K, Tein I. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun. 2003;306(1):121–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Wagner CA, Lukewille U, Kaltenbach S, Moschen I, Broer A, Risler T, et al. Functional and pharmacological characterization of human Na+-carnitine cotransporter hOCTN2. Am J Physiol Renal Physiol. 2000;279(3):F584–91.PubMedGoogle Scholar
  178. 178.
    Srinivas SR, Prasad PD, Umapathy NS, Ganapathy V, Shekhawat PS. Transport of butyryl-L-carnitine, a potential prodrug, via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G1046–53. doi: 10.1152/ajpgi.00233.2007.PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, et al. ß-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 2000;275(3):1699–707.PubMedCrossRefGoogle Scholar
  180. 180.
    Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Grigat S, Fork C, Bach M, Golz S, Geerts A, Schomig E, et al. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37(2):330–7. doi: 10.1124/dmd.108.023929.PubMedCrossRefGoogle Scholar
  182. 182.
    Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291(2):778–84.PubMedGoogle Scholar
  183. 183.
    Grube M, Meyer Zu Schwabedissen HE, Prager D, Haney J, Moritz KU, Meissner K, et al. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation. 2006;113(8):1114–22. doi: 10.1161/CIRCULATIONAHA.105.586107.PubMedCrossRefGoogle Scholar
  184. 184.
    Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. From the cover: a human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005;102(50):17923–8.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Muller F, Konig J, Glaeser H, Schmidt I, Zolk O, Fromm MF, et al. Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011;55(7):3091–8. doi: 10.1128/AAC.01835-10.PubMedCentralPubMedCrossRefGoogle Scholar
  186. 186.
    Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci. 2009;12(3):388–96.PubMedGoogle Scholar
  187. 187.
    Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006;319(2):879–86.PubMedCrossRefGoogle Scholar
  188. 188.
    Yasujima T, Ohta KY, Inoue K, Ishimaru M, Yuasa H. Evaluation of 4′,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos. 2010;38(4):715–21. doi: 10.1124/dmd.109.030221.PubMedCrossRefGoogle Scholar
  189. 189.
    Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H, Kondo T, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab Dispos. 2009;37(3):555–9. doi: 10.1124/dmd.108.023911.PubMedCrossRefGoogle Scholar
  190. 190.
    Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.PubMedCrossRefGoogle Scholar
  191. 191.
    Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127–35. doi: 10.1681/ASN.2006030205.PubMedCrossRefGoogle Scholar
  192. 192.
    Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol. 2005;67(4):1067–77.PubMedCrossRefGoogle Scholar
  193. 193.
    Pelis RM, Zhang X, Dangprapai Y, Wright SH. Cysteine accessibility in the hydrophilic cleft of the human organic cation transporter 2. J Biol Chem. 2006;281:35272–80.PubMedCrossRefGoogle Scholar
  194. 194.
    Pelis RM, Dangprapai Y, Cheng Y, Zhang X, Terpstra J, Wright SH. Functional significance of conserved cysteines in the human organic cation transporter 2. Am J Physiol Renal Physiol. 2012;303(2):F313–20. doi: 10.1152/ajprenal.00038.2012.PubMedCentralPubMedCrossRefGoogle Scholar
  195. 195.
    Ciarimboli G, Koepsell H, Iordanova M, Gorboulev V, Dürner B, Lang D, et al. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 2005;16:1562–70.PubMedCrossRefGoogle Scholar
  196. 196.
    Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346(2):300–10. doi: 10.1124/jpet.113.203257.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Brast S, Grabner A, Sucic S, Sitte HH, Hermann E, Pavenstadt H, et al. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 2012;26(3):976–86. doi: 10.1096/fj.11-180679.PubMedCentralPubMedCrossRefGoogle Scholar
  198. 198.
    Grabner A, Brast S, Sucic S, Bierer S, Hirsch B, Pavenstädt H, et al. LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment. Cell Mol Life Sci. 2011;68(24):4079–90. doi: 10.1007/s00018-011-0694-6.PubMedCrossRefGoogle Scholar
  199. 199.
    Wieland A, Hayer-Zillgen M, Bonisch H, Bruss M. Analysis of the gene structure of the human (SLC22A3) and murine (Slc22a3) extraneuronal monoamine transporter. J Neural Transm. 2000;107(10):1149–57.PubMedCrossRefGoogle Scholar
  200. 200.
    Schneider E, Machavoine F, Pleau JM, Bertron AF, Thurmond RL, Ohtsu H, et al. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels. J Exp Med. 2005;202(3):387–93.PubMedCentralPubMedCrossRefGoogle Scholar
  201. 201.
    Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol. 2001;21(13):4188–96.PubMedCentralPubMedCrossRefGoogle Scholar
  202. 202.
    Verhaagh S, Barlow DP, Zwart R. The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev. 2001;100(1):127–30.PubMedCrossRefGoogle Scholar
  203. 203.
    Vialou V, Amphoux A, Zwart R, Giros B, Gautron S. Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci. 2004;24(11):2846–51.PubMedCrossRefGoogle Scholar
  204. 204.
    Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S. Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem. 2008;106(3):1471–82.PubMedGoogle Scholar
  205. 205.
    Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF, et al. Decreased anxiety in mice lacking the organic cation transporter 3. J Neural Transm. 2009;116(6):689–97. doi: 10.1007/s00702-009-0205-1.PubMedCrossRefGoogle Scholar
  206. 206.
    Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A. 2008;105(48):18976–81. doi: 10.1073/pnas.0800466105.PubMedCentralPubMedCrossRefGoogle Scholar
  207. 207.
    Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273(26):15971–9.PubMedCrossRefGoogle Scholar
  208. 208.
    Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998;273(49):32776–86.PubMedCrossRefGoogle Scholar
  209. 209.
    Amphoux A, Vialou V, Drescher E, Bruss M, la Mannoury CC, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50(8):941–52. doi: 10.1016/j.neuropharm.2006.01.005.PubMedCrossRefGoogle Scholar
  210. 210.
    Gasser PJ, Lowry CA, Orchinik M. Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci. 2006;26(34):8758–66.PubMedCrossRefGoogle Scholar
  211. 211.
    Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ. 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem. 2003;85(2):358–67.PubMedCrossRefGoogle Scholar
  212. 212.
    Ahmadimoghaddam D, Hofman J, Zemankova L, Nachtigal P, Dolezelova E, Cerveny L, et al. Synchronized activity of organic cation transporter 3 (Oct3/Slc22a3) and multidrug and toxin extrusion 1 (Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat. Toxicol Sci. 2012;128(2):471–81. doi: 10.1093/toxsci/kfs160.PubMedCrossRefGoogle Scholar
  213. 213.
    Ahmadimoghaddam D, Staud F. Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod Toxicol. 2013;39:17–22. doi: 10.1016/j.reprotox.2013.03.001.PubMedCrossRefGoogle Scholar
  214. 214.
    Gründemann D, Koschker AC, Haag C, Honold C, Zimmermann T, Schömig E. Activation of the extraneuronal monoamine transporter (EMT) from rat expressed in 293 cells. Br J Pharmacol. 2002;137(6):910–8.PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    Zhu HJ, Appel DI, Grundemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res. 2012;65(4):491–6. doi: 10.1016/j.phrs.2012.01.008.PubMedCrossRefGoogle Scholar
  216. 216.
    Schildkraut JJ, Mooney JJ. Toward a rapidly acting antidepressant: the normetanephrine and extraneuronal monoamine transporter (uptake 2) hypothesis. Am J Psychiatry. 2004;161(5):909–11.PubMedCrossRefGoogle Scholar
  217. 217.
    Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41(3):283–5. doi: 10.1038/ng.314.PubMedCrossRefGoogle Scholar
  218. 218.
    Gunther J, Tian Y, Stamova B, Lit L, Corbett B, Ander B, et al. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Res. 2012;200(2–3):593–601. doi: 10.1016/j.psychres.2012.04.034.PubMedCrossRefGoogle Scholar
  219. 219.
    Shnitsar V, Eckardt R, Gupta S, Grottker J, Muller GA, Koepsell H, et al. Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res. 2009;69(4):1494–501.PubMedCrossRefGoogle Scholar
  220. 220.
    Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui K. Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos. 2008;36(11):2299–306. doi: 10.1124/dmd.108.023168.PubMedCrossRefGoogle Scholar
  221. 221.
    Hayer-Zillgen M, Bruss M, Bonisch H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002;136(6):829–36.PubMedCentralPubMedCrossRefGoogle Scholar
  222. 222.
    Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem. 2000;275(51):40064–72.PubMedCrossRefGoogle Scholar
  223. 223.
    Kobayashi D, Aizawa S, Maeda T, Tsuboi I, Yabuuchi H, Nezu J, et al. Expression of organic cation transporter OCTN1 in hematopoietic cells during erythroid differentiation. Exp Hematol. 2004;32(12):1156–62. doi: 10.1016/j.exphem.2004.08.009.PubMedCrossRefGoogle Scholar
  224. 224.
    Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003;35(4):341–8.PubMedCrossRefGoogle Scholar
  225. 225.
    Lamhonwah AM, Hawkins CE, Tam C, Wong J, Mai L, Tein I. Expression patterns of the organic cation/carnitine transporter family in adult murine brain. Brain Dev. 2008;30(1):31–42. doi: 10.1016/j.braindev.2007.05.005.PubMedCrossRefGoogle Scholar
  226. 226.
    Nakamichi N, Taguchi T, Hosotani H, Wakayama T, Shimizu T, Sugiura T, et al. Functional expression of carnitine/organic cation transporter OCTN1 in mouse brain neurons: possible involvement in neuronal differentiation. Neurochem Int. 2012;61(7):1121–32. doi: 10.1016/j.neuint.2012.08.004.PubMedCrossRefGoogle Scholar
  227. 227.
    Lamhonwah AM, Mai L, Chung C, Lamhonwah D, Ackerley C, Tein I. Upregulation of mammary gland OCTNs maintains carnitine homeostasis in suckling infants. Biochem Biophys Res Commun. 2011;404(4):1010–5. doi: 10.1016/j.bbrc.2010.12.100.PubMedCrossRefGoogle Scholar
  228. 228.
    Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, et al. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res. 2010;27(5):832–40. doi: 10.1007/s11095-010-0076-z.PubMedCrossRefGoogle Scholar
  229. 229.
    Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, et al. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci. 2013;102(9):3407–17. doi: 10.1002/jps.23595.PubMedCrossRefGoogle Scholar
  230. 230.
    Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci. 2013;132(1):32–42. doi: 10.1093/toxsci/kfs330.PubMedCrossRefGoogle Scholar
  231. 231.
    Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS One. 2014;9(2):e89434. doi: 10.1371/journal.pone.0089434.PubMedCentralPubMedCrossRefGoogle Scholar
  232. 232.
    Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466(1–2):315–27.PubMedCrossRefGoogle Scholar
  233. 233.
    Choudhuri S, Cherrington NJ, Li N, Klaassen CD. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos. 2003;31(11):1337–45.PubMedCrossRefGoogle Scholar
  234. 234.
    Maeda T, Goto A, Kobayashi D, Tamai I. Transport of organic cations across the blood-testis barrier. Mol Pharm. 2007;4(4):600–7. doi: 10.1021/mp070023l.PubMedCrossRefGoogle Scholar
  235. 235.
    Nakamura T, Yoshida K, Yabuuchi H, Maeda T, Tamai I. Functional characterization of ergothioneine transport by rat organic cation/carnitine transporter Octn1 (slc22a4). Biol Pharm Bull. 2008;31(8):1580–4.PubMedCrossRefGoogle Scholar
  236. 236.
    Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ. Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther. 2011;338(2):537–47. doi: 10.1124/jpet.111.181297.PubMedCrossRefGoogle Scholar
  237. 237.
    Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008;36(7):1300–7. doi: 10.1124/dmd.108.021121.PubMedCrossRefGoogle Scholar
  238. 238.
    Horvath G, Schmid N, Fragoso MA, Schmid A, Conner GE, Salathe M, et al. Epithelial organic cation transporters ensure pH dependent drug absorption in the airway. Am J Respir Cell Mol Biol. 2007;36(1):53–60.PubMedCentralPubMedCrossRefGoogle Scholar
  239. 239.
    Newman B, Wintle RF, Van OM, Yazdanpanah M, Owen J, Johnson B, et al. SLC22A4 polymorphisms implicated in rheumatoid arthritis and Crohn’s disease are not associated with rheumatoid arthritis in a Canadian Caucasian population. Arthritis Rheum. 2005;52(2):425–9. doi: 10.1002/art.20854.PubMedCrossRefGoogle Scholar
  240. 240.
    Markova NG, Karaman-Jurukovska N, Dong KK, Damaghi N, Smiles KA, Yarosh DB. Skin cells and tissue are capable of using L-ergothioneine as an integral component of their antioxidant defense system. Free Radic Biol Med. 2009;46(8):1168–76. doi: 10.1016/j.freeradbiomed.2009.01.021.PubMedCrossRefGoogle Scholar
  241. 241.
    Nakamura T, Sugiura S, Kobayashi D, Yoshida K, Yabuuchi H, Aizawa S, et al. Decreased proliferation and erythroid differentiation of K562 cells by siRNA-induced depression of OCTN1 (SLC22A4) transporter gene. Pharm Res. 2007;24(9):1628–35. doi: 10.1007/s11095-007-9290-8.PubMedCrossRefGoogle Scholar
  242. 242.
    Lu K, Nishimori H, Nakamura Y, Shima K, Kuwajima M. A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem Biophys Res Commun. 1998;252(3):590–4.PubMedCrossRefGoogle Scholar
  243. 243.
    Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R, George V, et al. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2(-/-)) mice. Mol Genet Metab. 2007;92(4):315–24. doi: 10.1016/j.ymgme.2007.08.002.PubMedCentralPubMedCrossRefGoogle Scholar
  244. 244.
    Shekhawat PS, Yang HS, Bennett MJ, Carter AL, Matern D, Tamai I, et al. Carnitine content and expression of mitochondrial beta-oxidation enzymes in placentas of wild-type (OCTN2(+/+)) and OCTN2 Null (OCTN2(-/-)) Mice. Pediatr Res. 2004;56(3):323–8. doi: 10.1203/01.PDR.0000134252.02876.55.PubMedCrossRefGoogle Scholar
  245. 245.
    Kai S, Yakushiji K, Yamauchi M, Ito C, Kuwajima M, Osada Y, et al. Expression of novel organic cation/carnitine transporter (OCTN2) in the mouse pancreas. Tissue Cell. 2005;37(4):309–15. doi: 10.1016/j.tice.2005.04.001.PubMedCrossRefGoogle Scholar
  246. 246.
    Koch A, Konig B, Stangl GI, Eder K. PPAR alpha mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis. Exp Biol Med. 2008;233(3):356–65. doi: 10.3181/0706-RM-168.CrossRefGoogle Scholar
  247. 247.
    Luci S, Hirche F, Eder K. Fasting and caloric restriction increases mRNA concentrations of novel organic cation transporter-2 and carnitine concentrations in rat tissues. Ann Nutr Metab. 2008;52(1):58–67. doi: 10.1159/000118872.PubMedCrossRefGoogle Scholar
  248. 248.
    Nakanishi T, Hasegawa Y, Haruta T, Wakayama T, Tamai I. In vivo evidence of organic cation transporter-mediated tracheal accumulation of the anticholinergic agent ipratropium in mice. J Pharm Sci. 2013;102(9):3373–81. doi: 10.1002/jps.23603.PubMedCrossRefGoogle Scholar
  249. 249.
    Sekine T, Kusuhara H, Utsunomiya-Tate N, Tsuda M, Sugiyama Y, Kanai Y, et al. Molecular cloning and characterization of high-affinity carnitine transporter from rat intestine. Biochem Biophys Res Commun. 1998;251(2):586–91. doi: 10.1006/bbrc.1998.9521.PubMedCrossRefGoogle Scholar
  250. 250.
    Furuichi Y, Sugiura T, Kato Y, Shimada Y, Masuda K. OCTN2 is associated with carnitine transport capacity of rat skeletal muscles. Acta Physiol (Oxf). 2010;200(1):57–64. doi: 10.1111/j.1748-1716.2010.02101.x.Google Scholar
  251. 251.
    Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482–92.PubMedGoogle Scholar
  252. 252.
    Rodriguez CM, Labus JC, Hinton BT. Organic cation/carnitine transporter, OCTN2, is differentially expressed in the adult rat epididymis. Biol Reprod. 2002;67(1):314–9.PubMedCrossRefGoogle Scholar
  253. 253.
    Augustine LM, Markelewicz Jr RJ, Boekelheide K, Cherrington NJ. Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab Dispos. 2005;33(1):182–9. doi: 10.1124/dmd.104.001024.PubMedCrossRefGoogle Scholar
  254. 254.
    Inazu M, Takeda H, Maehara K, Miyashita K, Tomoda A, Matsumiya T. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J Neurochem. 2006;97(2):424–34. doi: 10.1111/j.1471-4159.2006.03757.x.PubMedCrossRefGoogle Scholar
  255. 255.
    Miecz D, Januszewicz E, Czeredys M, Hinton BT, Berezowski V, Cecchelli R, et al. Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier. J Neurochem. 2008;104(1):113–23. doi: 10.1111/j.1471-4159.2007.05024.x.PubMedGoogle Scholar
  256. 256.
    Schurch R, Todesco L, Novakova K, Mevissen M, Stieger B, Krahenbuhl S. The plasma carnitine concentration regulates renal OCTN2 expression and carnitine transport in rats. Eur J Pharmacol. 2010;635(1–3):171–6. doi: 10.1016/j.ejphar.2010.02.045.PubMedCrossRefGoogle Scholar
  257. 257.
    Furuichi Y, Sugiura T, Kato Y, Takakura H, Hanai Y, Hashimoto T, et al. Muscle contraction increases carnitine uptake via translocation of OCTN2. Biochem Biophys Res Commun. 2012;418(4):774–9. doi: 10.1016/j.bbrc.2012.01.101.PubMedCrossRefGoogle Scholar
  258. 258.
    Brooks H, Krahenbuhl S. Identification and tissue distribution of two differentially spliced variants of the rat carnitine transporter OCTN2. FEBS Lett. 2001;508(2):175–80.PubMedCrossRefGoogle Scholar
  259. 259.
    Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21(1):91–4. doi: 10.1038/5030.PubMedCrossRefGoogle Scholar
  260. 260.
    Wang Y, Ye J, Ganapathy V, Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A. 1999;96(5):2356–60. Pubmed.PubMedCentralPubMedCrossRefGoogle Scholar
  261. 261.
    Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet. 1999;8(4):655–60. doi: ddc072 [pii].PubMedCrossRefGoogle Scholar
  262. 262.
    Ohashi R, Tamai I, Nezu JJ, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001;59(2):358–66.PubMedGoogle Scholar
  263. 263.
    Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, et al. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001;1512(2):273–84.PubMedCrossRefGoogle Scholar
  264. 264.
    Inano A, Sai Y, Kato Y, Tamai I, Ishiguro M, Tsuji A. Functional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition. Drug Metab Pharmacokinet. 2004;19(3):180–9.PubMedCrossRefGoogle Scholar
  265. 265.
    Filippo CA, Ardon O, Longo N. Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency. Biochim Biophys Acta. 2011;1812(3):312–20. doi: 10.1016/j.bbadis.2010.11.007.PubMedCrossRefGoogle Scholar
  266. 266.
    Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol. 2005;67(3):734–43.PubMedCrossRefGoogle Scholar
  267. 267.
    Watanabe C, Kato Y, Sugiura T, Kubo Y, Wakayama T, Iseki S, et al. PDZ adaptor protein PDZK2 stimulates transport activity of organic cation/carnitine transporter OCTN2 by modulating cell surface expression. Drug Metab Dispos. 2006;34(11):1927–34. doi: 10.1124/dmd.106.010207.PubMedCrossRefGoogle Scholar
  268. 268.
    Elimrani I, Lahjouji K, Seidman E, Roy MJ, Mitchell GA, Qureshi I. Expression and localization of organic cation/carnitine transporter OCTN2 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2003;284(5):G863–71.PubMedCrossRefGoogle Scholar
  269. 269.
    Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe. 2007;1(4):299–308. doi: 10.1016/j.chom.2007.05.004.PubMedCrossRefGoogle Scholar
  270. 270.
    Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol. 2004;287(2):C263–9. doi: 10.1152/ajpcell.00333.2003.PubMedCrossRefGoogle Scholar
  271. 271.
    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006;20(2):377–9. doi: 10.1096/fj.05-4985fje.PubMedGoogle Scholar
  272. 272.
    Xu S, Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Transport of L-carnitine in human corneal and conjunctival epithelial cells. Mol Vis. 2010;16:1823–31. doi: 197 [pii]. Pubmed.PubMedCentralPubMedGoogle Scholar
  273. 273.
    Karlic H, Schuster D, Varga F, Klindert G, Lapin A, Haslberger A, et al. Vegetarian diet affects genes of oxidative metabolism and collagen synthesis. Ann Nutr Metab. 2008;53(1):29–32. doi: 10.1159/000152871.PubMedCrossRefGoogle Scholar
  274. 274.
    Lamhonwah AM, Ackerley CA, Tilups A, Edwards VD, Wanders RJ, Tein I. OCTN3 is a mammalian peroxisomal membrane carnitine transporter. Biochem Biophys Res Commun. 2005;338(4):1966–72. doi: 10.1016/j.bbrc.2005.10.170.PubMedCrossRefGoogle Scholar
  275. 275.
    Duran JM, Peral MJ, Calonge ML, Ilundain AA. OCTN3: a Na + -independent L-carnitine transporter in enterocytes basolateral membrane. J Cell Physiol. 2005;202(3):929–35. doi: 10.1002/jcp.20193.PubMedCrossRefGoogle Scholar
  276. 276.
    Cano MM, Calonge ML, Ilundain AA. Expression of OCTN2 and OCTN3 in the apical membrane of rat renal cortex and medulla. J Cell Physiol. 2010;223(2):451–9. doi: 10.1002/jcp.22054.PubMedGoogle Scholar
  277. 277.
    Januszewicz E, Pajak B, Gajkowska B, Samluk L, Djavadian RL, Hinton BT, et al. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist. Int J Biochem Cell Biol. 2009;41(12):2599–609. doi: 10.1016/j.biocel.2009.08.020.PubMedCrossRefGoogle Scholar
  278. 278.
    Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27(11):587–93. doi: 10.1016/ Scholar
  279. 279.
    Hiasa M, Matsumoto T, Komatsu T, Moriyama Y. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am J Physiol Cell Physiol. 2006;291(4):C678–86. doi: 10.1152/ajpcell.00090.2006.PubMedCrossRefGoogle Scholar
  280. 280.
    Lickteig AJ, Cheng X, Augustine LM, Klaassen CD, Cherrington NJ. Tissue distribution, ontogeny and induction of the transporters Multidrug and toxin extrusion (MATE) 1 and MATE2 mRNA expression levels in mice. Life Sci. 2008;83(1–2):59–64. doi: 10.1016/j.lfs.2008.05.004.PubMedCentralPubMedCrossRefGoogle Scholar
  281. 281.
    Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther. 2010;333(1):341–50. doi: 10.1124/jpet.109.163642.PubMedCrossRefGoogle Scholar
  282. 282.
    Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui KI. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7. doi: 10.1016/j.bcp.2010.08.019.PubMedCrossRefGoogle Scholar
  283. 283.
    Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol. 2012;166(3):1183–91. doi: 10.1111/j.1476-5381.2012.01853.x.PubMedCentralPubMedCrossRefGoogle Scholar
  284. 284.
    Hume WE, Shingaki T, Takashima T, Hashizume Y, Okauchi T, Katayama Y, et al. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg Med Chem. 2013;21(24):7584–90. doi: 10.1016/j.bmc.2013.10.041.PubMedCrossRefGoogle Scholar
  285. 285.
    Kobara A, Hiasa M, Matsumoto T, Otsuka M, Omote H, Moriyama Y. A novel variant of mouse MATE-1 H+/organic cation antiporter with a long hydrophobic tail. Arch Biochem Biophys. 2008;469(2):195–9. doi: 10.1016/ Scholar
  286. 286.
    Terada T, Masuda S, Asaka J, Tsuda M, Katsura T, Inui K. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res. 2006;23(8):1696–701. doi: 10.1007/s11095-006-9016-3.PubMedCrossRefGoogle Scholar
  287. 287.
    Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006;34(11):1868–74. doi: 10.1124/dmd.106.010876.PubMedCrossRefGoogle Scholar
  288. 288.
    Asaka J, Terada T, Tsuda M, Katsura T, Inui K. Identification of essential histidine and cysteine residues of the H+/organic cation antiporter multidrug and toxin extrusion (MATE). Mol Pharmacol. 2007;71(6):1487–93. doi: 10.1124/mol.106.032938.PubMedCrossRefGoogle Scholar
  289. 289.
    Kajiwara M, Terada T, Asaka J, Ogasawara K, Katsura T, Ogawa O, et al. Critical roles of Sp1 in gene expression of human and rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol. 2007;293(5):F1564–70. doi: 10.1152/ajprenal.00322.2007.PubMedCrossRefGoogle Scholar
  290. 290.
    Motohashi H, Nakao Y, Masuda S, Katsura T, Kamba T, Ogawa O, et al. Precise comparison of protein localization among OCT, OAT, and MATE in human kidney. J Pharm Sci. 2013;102(9):3302–8. doi: 10.1002/jps.23567.PubMedCrossRefGoogle Scholar
  291. 291.
    Martinez-Guerrero LJ, Wright SH. Substrate-dependent inhibition of human MATE1 by cationic ionic liquids. J Pharmacol Exp Ther. 2013;346(3):495–503. doi: 10.1124/jpet.113.204206.PubMedCentralPubMedCrossRefGoogle Scholar
  292. 292.
    Dangprapai Y, Wright SH. Interaction of H+ with the extracellular and intracellular aspects of hMATE1. Am J Physiol Renal Physiol. 2011;301(3):F520–8. doi: 10.1152/ajprenal.00075.2011.PubMedCentralPubMedCrossRefGoogle Scholar
  293. 293.
    Matsumoto T, Kanamoto T, Otsuka M, Omote H, Moriyama Y. Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol. 2008;294(4):C1074–8. doi: 10.1152/ajpcell.00504.2007.PubMedCrossRefGoogle Scholar
  294. 294.
    Lee JH, Lee JE, Kim Y, Lee H, Jun HJ, Lee SJ. Multidrug and toxic compound extrusion protein-1 (MATE1/SLC47A1) is a novel flavonoid transporter. J Agric Food Chem. 2014;62(40):9690–8. doi: 10.1021/jf500916d.PubMedCrossRefGoogle Scholar
  295. 295.
    Hiasa M, Matsumoto T, Komatsu T, Omote H, Moriyama Y. Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol. 2007;293(5):C1437–44. doi: 10.1152/ajpcell.00280.2007.PubMedCrossRefGoogle Scholar
  296. 296.
    Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, et al. Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol. 2011;43(6):913–8. doi: 10.1016/j.biocel.2011.03.005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Experimental Nephrology, Medical Clinic DUniversity of MünsterMünsterGermany

Personalised recommendations