Skip to main content

CNF Reinforced Multiscale Composites

  • Chapter
  • First Online:
Carbon Nanofiber Reinforced Polymer Composites

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1118 Accesses

Abstract

Given the advantages of utilizing CNFs in polymers for improvement in mechanical properties, current research has progressed to the reinforcement of composites with three or more phases in order to elicit specified composite property enhancements and support tailorability and multifunctionality within composite systems. Since there are several possible categories in which to classify such composites, the following sections will focus on two types of composites that have been prominent in the literature: (1) particle reinforced composites with CNFs and (2) continuous fiber composite laminates with CNFs. In this chapter, the processing methods used to enhance the mechanical properties of the composite are discussed first, and then the studies involving composites containing polymer matrices, CNFs, and additional phases are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, N., Lin, T., & Shapiro, M. (2007). Clay-epoxy nanocomposites: processing and properties. JOM Journal of the Minerals Metals and Materials Society, 59(3), 61–65.

    Article  Google Scholar 

  2. Wang, J., & Qin, S. (2007). Study on the thermal and mechanical properties of epoxy–nanoclay composites: the effect of ultrasonic stirring time. Materials Letters, 61(19–20), 4222–4224.

    Article  Google Scholar 

  3. Park, J. H., & Jana, S. C. (2003). Mechanism of exfoliation of nanoclay particles in epoxy—clay nanocomposites. Macromolecules, 36(8), 2758–2768.

    Article  Google Scholar 

  4. Hilding, J., Grulke, E. A., Zhang, Z. G., & Lockwood, F. (2003). Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science and Technology, 24(1), 1–41.

    Article  Google Scholar 

  5. Asif, A., Rao, V. L., & Ninan, K. N. (2010). Nanoclay reinforced thermoplastic toughened epoxy hybrid syntactic foam: Surface morphology, mechanical and thermo mechanical properties. Materials Science and Engineering A, 527(23), 6184–6192.

    Article  Google Scholar 

  6. Wouterson, E. M., Boey, F. Y. C., Hu, X., & Wong, S.-C. (2007). Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer, 48(11), 3183–3191.

    Article  Google Scholar 

  7. Ferreira, J. A. M., Capela, C., & Costa, J. D. (2010). A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites. Composites Part A Applied Science and Manufacturing, 41(3), 345–352.

    Article  Google Scholar 

  8. Zhang, Y., Zhang, J., Shi, J., Toghiani, H., Xue, Y., & Pittman, C. U, Jr. (2009). Flexural properties and micromorphologies of wood flour/carbon nanofiber/maleated polypropylene/polypropylene composites. Composites Part A Applied Science and Manufacturing, 40(6–7), 948–953.

    Article  Google Scholar 

  9. Jang, J.-S., Varischetti, J., Lee, G. W., & Suhr, J. (2011). Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites. Composites Part A Applied Science and Manufacturing, 42(1), 98–103.

    Article  Google Scholar 

  10. Uddin, M. F., & Sun, C. T. (2010). Improved dispersion and mechanical properties of hybrid nanocomposites. Composites Science and Technology, 70(2), 223–230.

    Article  Google Scholar 

  11. Poveda, R., & Gupta, N. (2014). Carbon-Nanofiber-Reinforced Syntactic Foams: Compressive Properties and Strain Rate Sensitivity. JOM Journal of the Minerals Metals and Materials Society, 6(1), 66–77.

    Article  Google Scholar 

  12. Colloca, M., Gupta, N., & Porfiri, M. (2013). Tensile properties of carbon nanofiber reinforced multiscale syntactic foams Composite Part B. Engineering, 44(1), 584–591.

    Google Scholar 

  13. Dimchev, M., Caeti, R., & Gupta, N. (2010). Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites. Materials and Design, 31(3), 1332–1337.

    Article  Google Scholar 

  14. Poveda, R. L., Dorogokupets, G., & Gupta, N. (2013). Carbon nanofiber reinforced syntactic foams: Degradation mechanism for long term moisture exposure and residual compressive properties. Polymer Degradation and Stability, 98(10), 2041–2053.

    Article  Google Scholar 

  15. Poveda, R. L., Achar, S., & Gupta, N. (2014). Viscoelastic properties of carbon nanofiber reinforced multiscale syntactic foam. Composites Part B Engineering, 58, 208–216.

    Article  Google Scholar 

  16. Zhang, L., & Ma, J. (2013). Effect of carbon nanofiber reinforcement on mechanical properties of syntactic foam. Materials Science and Engineering A, 574, 191–196.

    Article  Google Scholar 

  17. Zhu, Y., Bakis, C. E., & Adair, J. H. (2012). Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. Carbon, 50(3), 1316–1331.

    Article  Google Scholar 

  18. Green, K. J., Dean, D. R., Vaidya, U. K., & Nyairo, E. (2009). Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites: Part A, 40(9), 1470–1475.

    Article  Google Scholar 

  19. Hossain, M. K., Hossain, M. E., Hosur, M. V., & Jeelani, S. (2011). Flexural and compression response of woven E-glass/polyester–CNF nanophased composites. Composites Part A Applied Science and Manufacturing, 42(11), 1774–1782.

    Article  Google Scholar 

  20. Sadeghian, R., Gangireddy, S., Minaie, B., & Hsiao, K.-T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A Applied Science and Manufacturing, 37(10), 1787–1795.

    Article  Google Scholar 

  21. Hossain, M. K., Hossain, M. E., Dewan, M. W., Hosur, M., & Jeelani, S. (2013). Effects of carbon nanofibers (CNFs) on thermal and interlaminar shear responses of E-glass/polyester composites. Composites Part B Engineering, 44(1), 313–320.

    Article  Google Scholar 

  22. Palmeri, M. J., Putz, K. W., Ramanathan, T., & Brinson, L. C. (2011). Multi-scale reinforcement of CFRPs using carbon nanofibers. Composites Science and Technology, 71(2), 79–86.

    Article  Google Scholar 

  23. Rana, S., Alagirusamy, R., & Joshi, M. (2011). Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Composites Part A Applied Science and Manufacturing, 42(5), 439–445.

    Article  Google Scholar 

  24. Rana, S., Alagirusamy, R., Fangueiro, R., & Joshi, M. (2012). Effect of carbon nanofiber functionalization on the in-plane mechanical properties of carbon/epoxy multiscale composites. Journal of Applied Polymer Science, 125(3), 1951–1958.

    Article  Google Scholar 

  25. Hu, N., Li, Y., Nakamura, T., Katsumata, T., Koshikawa, T., & Arai, M. (2012). Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates. Composites Part B Engineering, 43(1), 3–9.

    Article  Google Scholar 

  26. Rodriguez, A. J., Guzman, M. E., Lim, C.-S., & Minaie, B. (2011). Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon, 49(3), 937–948.

    Article  Google Scholar 

  27. Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X.-F., & Fong, H. (2011). Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Composites Part A Applied Science and Manufacturing, 42(12), 2036–2042.

    Google Scholar 

  28. Chen, Q., Zhao, Y., Zhou, Z., Rahman, A., Wu, X.-F., Wu, W., et al. (2013). Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Composites Part B Engineering, 44(1), 1–7.

    Article  Google Scholar 

  29. Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., & Fukunaga, H. (2009). Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A Applied Science and Manufacturing, 40(12), 2004–2012.

    Article  Google Scholar 

  30. Bortz, D. R., Merino, C., & Martin-Gullon, I. (2011). Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates. Composites Part A Applied Science and Manufacturing, 42(11), 1584–1591.

    Article  Google Scholar 

  31. Khan, S. U., & Kim, J.-K. (2012). Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers. Carbon, 50(14), 5265–5277.

    Article  Google Scholar 

  32. Arai, M., Noro, Y., Sugimoto, K.-I., & Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68(2), 516–525.

    Article  Google Scholar 

  33. Arai, M., Hirokawa, J.-I., Hanamura, Y., Ito, H., Hojo, M., & Quaresimin, M. (2014). Characteristics of Mode I fatigue crack propagation of CFRP laminates toughened with CNF interlayer. Composites Part B Engineering, 65, 26–33.

    Article  Google Scholar 

  34. Koissin, V., Warnet, L. L., & Akkerman, R. (2013). Delamination in carbon-fibre composites improved with in situ grown nanofibres. Engineering Fracture Mechanics, 101, 140–148.

    Article  Google Scholar 

  35. Gao, S. L., Mäder, E., & Plonka, R. (2007). Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties. Acta Materialia, 55(3), 1043–1052.

    Article  Google Scholar 

  36. Tibbetts, G. G. (1989). Vapor-grown carbon fibers: Status and prospects. Carbon, 27(5), 745–747.

    Article  Google Scholar 

  37. Rodriguez, A. J., Guzman, M. E., Lim, C.-S., & Minaie, B. (2010). Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers. Carbon, 48(11), 3256–3259.

    Article  Google Scholar 

  38. Minus, M., & Kumar, S. (2005). The processing, properties, and structure of carbon fibers. JOM Journal of the Minerals Metals and Materials Society, 57(2), 52–58.

    Article  Google Scholar 

  39. Poveda, R. L., & Gupta, N. (2013). Post-impact residual high strain rate compressive properties of carbon fiber laminates. Journal of Reinforced Plastics and Composites, 32(8), 564–573.

    Article  Google Scholar 

  40. Arai, M., Sasaki, T., Hirota, S., Ito, H., Hu, N., & Quaresimin, M. (2012). Mixed modes interlaminar fracture toughness of CFRP laminates toughened with CNF interlayer. Acta Mechanica Solida Sinica, 25(3), 321–330.

    Article  Google Scholar 

  41. Tibbetts, G. G., Lake, M. L., Strong, K. L., & Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 67(7–8), 1709–1718.

    Article  Google Scholar 

  42. Raza, M. A., Westwood, A., & Stirling, C. (2012). Effect of processing technique on the transport and mechanical properties of vapour grown carbon nanofibre/rubbery epoxy composites for electronic packaging applications. Carbon, 50(1), 84–97.

    Article  Google Scholar 

  43. Raza, M. A., Westwood, A. V. K., Stirling, C., & Hondow, N. (2011). Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites. Composites Part A Applied Science and Manufacturing, 42(10), 1335–1343.

    Article  Google Scholar 

  44. Poveda, R., & Gupta, N. (2014). Carbon-nanofiber-reinforced syntactic foams: compressive properties and strain rate sensitivity. JOM Journal of the Minerals Metals and Materials Society, 6(1), 66–77.

    Article  Google Scholar 

  45. Gupta, N., Zeltmann, S. E., Shunmugasamy, V. C., & Pinisetty, D.: Applications of polymer matrix syntactic foams. JOM: Journal of The Minerals, Metals and Materials Society, 66(2), 245–254.

    Google Scholar 

  46. Wouterson, E. M., Boey, F. Y. C., Wong, S. C., Chen, L., & Hu, X. (2007). Nano-toughening versus micro-toughening of polymer syntactic foams. Composites Science and Technology, 67(14), 2924–2933.

    Article  Google Scholar 

  47. Zhang, L., & Ma, J. (2009). Processing and characterization of syntactic carbon foams containing hollow carbon microspheres. Carbon, 47(6), 1451–1456.

    Article  Google Scholar 

  48. Bortz, D. R., Merino, C., & Martin-Gullon, I. (2011). Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Composites Science and Technology, 71(1), 31–38.

    Article  Google Scholar 

  49. Sui, G., Zhong, W.-H., Fuqua, M. A., & Ulven, C. A. (2007). Crystalline structure and properties of carbon nanofiber composites prepared by melt extrusion. Macromolecular Chemistry and Physics, 208(17), 1928–1936.

    Article  Google Scholar 

  50. Vera-Agullo, J., Varela-Rizo, H., Conesa, J. A., Almansa, C., Merino, C., & Martin-Gullon, I. (2007). Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon, 45(14), 2751–2758.

    Article  Google Scholar 

  51. Palmeri, M. J., Putz, K. W., & Brinson, L. C. (2010). Sacrificial bonds in stacked-cup carbon nanofibers: biomimetic toughening mechanisms for composite systems. ACS Nano, 4(7), 4256–4264.

    Article  Google Scholar 

  52. Al-Saleh, M. H., & Sundararaj, U. (2011). Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A Applied Science and Manufacturing, 42(12), 2126–2142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Poveda .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Poveda, R.L., Gupta, N. (2016). CNF Reinforced Multiscale Composites. In: Carbon Nanofiber Reinforced Polymer Composites. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23787-9_8

Download citation

Publish with us

Policies and ethics