Skip to main content

Mechanical Properties of CNF/Polymer Composites

  • Chapter
  • First Online:
  • 1242 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

This chapter discusses the effect of composition of CNF reinforced nanocomposites on their mechanical properties measured under tensile, compressive, and flexural loading. The structure of the CNFs plays an important role in determining the reinforcement efficiency. In most cases, random CNF dispersed nancomposites have been studied. Thermoplastic resin, thermosetting resin, and elastomer matrix nanocomposites have been studied. Polypropylene is the most common thermoplastic resin that is reinforced with CNFs. Among thermosets, epoxy and vinyl ester resin matrix nanocomposites are studied. The strength and stiffness improve, depending on the volume fractions of CNF dispersed within several different polymer matrices. It is noted that compared to the mechanical properties of single CNFs reported in Chap. 2, the level of enhancement of mechanical properties of nanocomposites is only moderate. The bending of long aspect ratio fibers and stacked-cup structures are potential reasons for this outcome. Nevertheless, combined with other properties, such as electrical and thermal conductivity increase in otherwise insulating resins, the moderately enhanced nanocomposites can develop new applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tibbetts, G. G., & Beetz, J. C. P. (1987). Mechanical properties of vapour-grown carbon fibres. Journal of Physics. D. Applied Physics, 20(3), 292.

    Article  Google Scholar 

  2. Hasan, M. M., Zhou, Y., & Jeelani, S. (2007). Thermal and tensile properties of aligned carbon nanofiber reinforced polypropylene. Materials Letters, 61(4–5), 1134–1136.

    Article  Google Scholar 

  3. Kuriger, R. J., Alam, M. K., Anderson, D. P., & Jacobsen, R. L. (2002). Processing and characterization of aligned vapor grown carbon fiber reinforced polypropylene. Composites Part A Applied Science and Manufacturing, 33(1), 53–62.

    Article  Google Scholar 

  4. Ingram, J., Zhou, Y., Jeelani, S., Lacy, T., & Horstemeyer, M. F. (2008). Effect of strain rate on tensile behavior of polypropylene and carbon nanofiber filled polypropylene. Materials Science and Engineering A, 489(1–2), 99–106.

    Article  Google Scholar 

  5. Brandl, W., Marginean, G., Chirila, V., & Warschewski, W. (2004). Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon, 42(1), 5–9.

    Article  Google Scholar 

  6. Kumar, S., Rath, T., Mahaling, R. N., Reddy, C. S., Das, C. K., Pandey, K. N., et al. (2007). Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites. Materials Science and Engineering B, 141(1–2), 61–70.

    Article  Google Scholar 

  7. Carneiro, O. S., Covas, J. A., Bernardo, C. A., Caldeira, G., Van Hattum, F. W. J., Ting, J. M., et al. (1998). Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Composites Science and Technology, 58(3–4), 401–407.

    Article  Google Scholar 

  8. Kumar, S., Doshi, H., Srinivasarao, M., Park, J. O., & Schiraldi, D. A. (2002). Fibers from polypropylene/nano carbon fiber composites. Polymer, 43(5), 1701–1703.

    Article  Google Scholar 

  9. Choi, Y. K., Sugimoto, K. I., Song, S. M., & Endo, M. (2005). Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets. Materials Letters, 59(27), 3514–3520.

    Article  Google Scholar 

  10. Howe, J. Y., Tibbetts, G. G., Kwag, C., & Lake, M. L. (2006). Heat treating carbon nanofibers for optimal composite performance. Journal of Materials Research, 21(10), 2646–2652.

    Article  Google Scholar 

  11. Larin, B., Lyashenko, T., Harel, H., & Marom, G. (2011). Flow induced orientated morphology and properties of nanocomposites of polypropylene/vapor grown carbon fibers. Composites Science and Technology, 71(2), 177–182.

    Article  Google Scholar 

  12. Teng, C.-C., Ma, C.-C. M., Cheng, B.-D., Shih, Y.-F., Chen, J.-W., & Hsiao, Y.-K. (2011). Mechanical and thermal properties of polylactide-grafted vapor-grown carbon nanofiber/polylactide nanocomposites. Composites Part A Applied Science and Manufacturing, 42(8), 928–934.

    Article  Google Scholar 

  13. Wang, D. H., Sihn, S., Roy, A. K., Baek, J.-B., & Tan, L.-S. (2010). Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization. European Polymer Journal, 46(7), 1404–1416.

    Article  Google Scholar 

  14. Ahn, S.-N., Lee, H.-J., Kim, B.-J., Tan, L.-S., & Baek, J.-B. (2008). Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites. Journal of Polymer Science Part A: Polymer Chemistry, 46(22), 7473–7482.

    Article  Google Scholar 

  15. Patton, R. D., Pittman, J. C. U., Wang, L., & Hill, J. R. (1999). Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Composites Part A Applied Science and Manufacturing, 30(9), 1081–1091.

    Article  Google Scholar 

  16. Sun, L.-H., Ounaies, Z., Gao, X.-L., Whalen, C. A., & Yang, Z.-G. (2011). Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. Journal of Nanomaterials, 2011 p. Article ID 307589, 8 pp.

    Google Scholar 

  17. Xu, L. R., Bhamidipati, V., Zhong, W.-H., Li, J., Lukehart, C. M., Lara-Curzio, E., et al. (2004). Mechanical property characterization of a polymeric nanocomposite reinforced by graphitic nanofibers with reactive linkers. Journal of Composite Materials, 38(18), 1563–1582.

    Article  Google Scholar 

  18. Xu, J., Donohoe, J. P., & Pittman, C. U, Jr. (2004). Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Composites Part A Applied Science and Manufacturing, 35(6), 693–701.

    Article  Google Scholar 

  19. Choi, Y.-K., Sugimoto, K.-I., Song, S.-M., Gotoh, Y., Ohkoshi, Y., & Endo, M. (2005). Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon, 43(10), 2199–2208.

    Article  Google Scholar 

  20. Gauthier, C., Chazeau, L., Prasse, T., & Cavaille, J. Y. (2005). Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices. Composites Science and Technology, 65(2), 335–343.

    Article  Google Scholar 

  21. Zhou, Y., Akanda, S. R., Jeelani, S., & Lacy, T. E. (2007). Nonlinear constitutive equation for vapor-grown carbon nanofiber-reinforced SC-15 epoxy at different strain rate. Materials Science and Engineering A, 465(1–2), 238–246.

    Article  Google Scholar 

  22. Bal, S. (2010). Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Materials and Design, 31(5), 2406–2413.

    Article  Google Scholar 

  23. Colloca, M., Gupta, N., & Porfiri, M. (2013). Tensile properties of carbon nanofiber reinforced multiscale syntactic foams. Composite Part B Engineering, 44(1), 584–591.

    Article  Google Scholar 

  24. Bafekrpour, E., Yang, C., Natali, M., & Fox, B. (2013). Functionally graded carbon nanofiber/phenolic nanocomposites and their mechanical properties. Composites Part A Applied Science and Manufacturing, 54, 124–134.

    Article  Google Scholar 

  25. Mapkar, J. A., Belashi, A., Berhan, L. M., & Coleman, M. R. (2013). Formation of high loading flexible carbon nanofiber network composites. Composites Science and Technology, 75, 1–6.

    Article  Google Scholar 

  26. Raza, M. A., Westwood, A., & Stirling, C. (2012). Effect of processing technique on the transport and mechanical properties of vapour grown carbon nanofibre/rubbery epoxy composites for electronic packaging applications. Carbon, 50(1), 84–97.

    Article  Google Scholar 

  27. Raza, M. A., Westwood, A. V. K., Stirling, C., & Hondow, N. (2011). Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites. Composites Part A Applied Science and Manufacturing, 42(10), 1335–1343.

    Article  Google Scholar 

  28. Sánchez, M., Rams, J., Campo, M., Jiménez-Suárez, A., & Ureña, A. (2011). Characterization of carbon nanofiber/epoxy nanocomposites by the nanoindentation technique. Composites Part B Engineering, 42(4), 638–644.

    Article  Google Scholar 

  29. Ozkan, T., Chen, Q., & Chasiotis, I. (2012). Interfacial strength and fracture energy of individual carbon nanofibers in epoxy matrix as a function of surface conditions. Composites Science and Technology, 72(9), 965–975.

    Article  Google Scholar 

  30. Bortz, D. R., Merino, C., & Martin-Gullon, I. (2011). Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Composites Science and Technology, 71(1), 31–38.

    Article  Google Scholar 

  31. Karadeniz, Z. H., & Kumlutas, D. (2007). A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Composite Structures, 78(1), 1–10.

    Article  Google Scholar 

  32. Al-Saleh, M. H., & Sundararaj, U. (2011). Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A Applied Science and Manufacturing, 42(12), 2126–2142.

    Article  Google Scholar 

  33. Ghasemi, A. R., Mohammadi, M. M., & Mohandes, M. (2015). The role of carbon nanofibers on thermo mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Composites Part B Engineering, 77, 519–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Poveda .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Poveda, R.L., Gupta, N. (2016). Mechanical Properties of CNF/Polymer Composites. In: Carbon Nanofiber Reinforced Polymer Composites. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23787-9_3

Download citation

Publish with us

Policies and ethics