Skip to main content

Carbon Nanofibers: Structure and Fabrication

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

In this chapter, vapor-grown and electrospun carbon nanofibers (CNFs) are emphasized. Fabrication processes and surface modification methods for CNFs are presented. Microstructure of CNFs is discussed based on the reported observations in various studies. CNFs have a complex structure compared to the structure of carbon nanotubes . The orientation of carbon layers in CNFs affects their mechanical properties. Experimental analyses and resulting trends are discussed from various published works, such as studies that investigate the tensile and flexural properties of individual CNFs. The range of measured properties is rather wide, which is likely due to the difference in the structure of the fibers that were tested and the presence of defects. Molecular dynamic simulation results on single nanofibers are also presented to understand their potential of reinforcing composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tibbetts, G. G. (1989). Vapor-grown carbon fibers: Status and prospects. Carbon, 27(5), 745–747.

    Article  Google Scholar 

  2. Fitzer, E. (1989). Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27(5), 621–645.

    Article  Google Scholar 

  3. Al-Saleh, M. H., & Sundararaj, U. (2009). A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 47(1), 2–22.

    Article  Google Scholar 

  4. Al-Saleh, M. H., & Sundararaj, U. (2011). Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A: Applied Science and Manufacturing, 42(12), 2126–2142.

    Article  Google Scholar 

  5. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350–1375.

    Article  Google Scholar 

  6. Tibbetts, G. G., Lake, M. L., Strong, K. L., & Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 67(7–8), 1709–1718.

    Article  Google Scholar 

  7. Kim, Y. A., Hayashi, T., Endo, M., & Dresselhaus, M. S. (2013). Carbon nanofibers. In: R. Vajtai (Ed.), Springer handbook of nanomaterials (p. 1500). Berlin: Springer.

    Google Scholar 

  8. Teo, K. B. K., Singh, C., & Milne, W. I. (2003). Catalytic synthesis of carbon nanotubes and nanofibers. In: H. S. Nalwa (Ed.), Encyclopedia of nanoscience and nanotechnology (pp. 665–686). Stevenson Ranch, CA, USA: American Scientific Publishers.

    Google Scholar 

  9. Palmeri, M. J., Putz, K. W., Ramanathan, T., & Brinson, L. C. (2011). Multi-scale reinforcement of CFRPs using carbon nanofibers. Composites Science and Technology, 71(2), 79–86.

    Article  Google Scholar 

  10. Vera-Agullo, J., Varela-Rizo, H., Conesa, J. A., Almansa, C., Merino, C., & Martin-Gullon, I. (2007). Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon, 45(14), 2751–2758.

    Article  Google Scholar 

  11. Schulz, M., Shanov, V. N., & Yin, Z. (2013). 1.1.6—A note on carbon nanofibers. In: Nanotube superfiber materials: Changing engineering design (pp. 10–11). Oxford: Elsevier Science.

    Google Scholar 

  12. Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., & Lowndes, D. H., et al. (2005). Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. Journal of Applied Physics, 97(4), 041301-041301-39.

    Google Scholar 

  13. Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., & Merino, C. (2006). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572–1580.

    Article  Google Scholar 

  14. Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999). Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters, 315(1–2), 25–30.

    Article  Google Scholar 

  15. Rodriguez, N. M., Chambers, A., & Baker, R. T. K. (1995). Catalytic engineering of carbon nanostructures. Langmuir, 11(10), 3862–3866.

    Article  Google Scholar 

  16. Terrones, H., Hayashi, T., Muñoz-Navia, M., Terrones, M., Kim, Y. A., Grobert, N., et al. (2001). Graphitic cones in palladium catalysed carbon nanofibres. Chemical Physics Letters, 343(3–4), 241–250.

    Article  Google Scholar 

  17. Wei, C. Y., & Srivastava, D. (2004). Nanomechanics of carbon nanofibers: Structural and elastic properties. Applied Physics Letters, 85(12), 2208–2210.

    Article  Google Scholar 

  18. Gu, J., & Sansoz, F. (2014). Role of cone angle on the mechanical behavior of cup-stacked carbon nanofibers studied by atomistic simulations. Carbon, 66, 523–529.

    Article  Google Scholar 

  19. Zhang, L., Aboagye, A., Kelkar, A., Lai, C., & Fong, H. (2014). A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 49(2), 463–480.

    Article  Google Scholar 

  20. Arshad, S. N., Naraghi, M., & Chasiotis, I. (2011). Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon, 49(5), 1710–1719.

    Article  Google Scholar 

  21. Zhou, Z., Liu, K., Lai, C., Zhang, L., Li, J., Hou, H., et al. (2010). Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 51(11), 2360–2367.

    Article  Google Scholar 

  22. Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D. A., Quintana, J. P., & Ruoff, R. S. (2005). Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43(10), 2175–2185.

    Article  Google Scholar 

  23. Pelfrey, S., Cantu, T., Papantonakis, M. R., Simonson, D. L., McGill, R. A., & Macossay, J. (2010). Microscopic and spectroscopic studies of thermally enhanced electrospun PMMA micro- and nanofibers. Polymer Chemistry, 1(6), 866–869.

    Article  Google Scholar 

  24. Endo, M., Kim, Y. A., Hayashi, T., Nishimura, K., Matusita, T., Miyashita, K., & Dresselhaus, M. S. (2001). Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications. Carbon, 39(9), 1287–1297.

    Article  Google Scholar 

  25. Hasan, M. M., Zhou, Y., & Jeelani, S. (2007). Thermal and tensile properties of aligned carbon nanofiber reinforced polypropylene. Materials Letters, 61(4–5), 1134–1136.

    Article  Google Scholar 

  26. Kuriger, R. J., Alam, M. K., Anderson, D. P., & Jacobsen, R. L. (2002). Processing and characterization of aligned vapor grown carbon fiber reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 33(1), 53–62.

    Article  Google Scholar 

  27. Lim, C.-S., Rodriguez, A. J., Guzman, M. E., Schaefer, J. D., & Minaie, B. (2011). Processing and properties of polymer composites containing aligned functionalized carbon nanofibers. Carbon, 49(6), 1873–1883.

    Article  Google Scholar 

  28. Ozkan, T., Naraghi, M., & Chasiotis, I. (2010). Mechanical properties of vapor grown carbon nanofibers. Carbon, 48(1), 239–244.

    Article  Google Scholar 

  29. Tan, E. P. S., & Lim, C. T. (2006). Mechanical characterization of nanofibers—A review. Composites Science and Technology, 66(9), 1102–1111.

    Article  Google Scholar 

  30. Zhang, J., Loya, P., Peng, C., Khabashesku, V., & Lou, J. (2012). Quantitative in situ mechanical characterization of the effects of chemical functionalization on individual carbon nanofibers. Advanced Functional Materials, 22(19), 4070–4077.

    Article  Google Scholar 

  31. Kim, G.-T., Gu, G., Waizmann, U., & Roth, S. (2002). Simple method to prepare individual suspended nanofibers. Applied Physics Letters, 80(10), 1815–1817.

    Article  Google Scholar 

  32. Chen, Y.-M., & Ting, J.-M. (2002). Ultra high thermal conductivity polymer composites. Carbon, 40(3), 359–362.

    Article  Google Scholar 

  33. Gershon, A. L., & Bruck, H. A. (2011). Mechanical behavior of hierarchically-structured polymer composites. In: T. Proulx (Ed.), Experimental and applied mechanics (Vol. 6, pp. 347–354). New York: Springer.

    Google Scholar 

  34. Gu, J., & Sansoz, F. (2013). An atomistic simulation study of the mechanisms and kinetics of surface bond strengthening in thermally-treated cone-stacked carbon nanofibers. Carbon, 56, 351–357.

    Article  Google Scholar 

  35. Poveda, R., & Gupta, N. (2014). Carbon-nanofiber-reinforced syntactic foams: Compressive properties and strain rate sensitivity. JOM Journal of the Minerals Metals and Materials Society, 6(1), 66–77.

    Article  Google Scholar 

  36. Lawrence, J. G., Berhan, L. M., & Nadarajah, A. (2008). Elastic properties and morphology of individual carbon nanofibers. ACS Nano, 2(6), 1230–1236.

    Article  Google Scholar 

  37. Tan, E. P. S., & Lim, C. T. (2004). Physical properties of a single polymeric nanofiber. Applied Physics Letters, 84(9), 1603–1605.

    Article  Google Scholar 

  38. Al-Saleh, M. H., & Sundararaj, U. (2010). Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer, 51(12), 2740–2747.

    Article  Google Scholar 

  39. Zhu, Y., Bakis, C. E., & Adair, J. H. (2012). Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. Carbon, 50(3), 1316–1331.

    Article  Google Scholar 

  40. Prolongo, S. G., Burón, M., Gude, M. R., Chaos-Morán, R., Campo, M., & Ureña, A. (2008). Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology, 68(13), 2722–2730.

    Article  Google Scholar 

  41. Lim, J.-Y., Oh, S.-I., Kim, Y.-C., Jee, K.-K., Sung, Y.-M., & Han, J. H. (2012). Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Materials Science and Engineering A, 556, 337–342.

    Article  Google Scholar 

  42. Ingram, J., Zhou, Y., Jeelani, S., Lacy, T., & Horstemeyer, M. F. (2008). Effect of strain rate on tensile behavior of polypropylene and carbon nanofiber filled polypropylene. Materials Science and Engineering A, 489(1–2), 99–106.

    Article  Google Scholar 

  43. Wang, D. H., Sihn, S., Roy, A. K., Baek, J.-B., & Tan, L.-S. (2010). Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization. European Polymer Journal, 46(7), 1404–1416.

    Article  Google Scholar 

  44. Ahn, S.-N., Lee, H.-J., Kim, B.-J., Tan, L.-S., & Baek, J.-B. (2008). Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites. Journal of Polymer Science Part A: Polymer Chemistry, 46(22), 7473–7482.

    Article  Google Scholar 

  45. Brandl, W., Marginean, G., Chirila, V., & Warschewski, W. (2004). Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon, 42(1), 5–9.

    Article  Google Scholar 

  46. Kumar, S., Rath, T., Mahaling, R. N., Reddy, C. S., Das, C. K., Pandey, K. N., et al. (2007). Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites. Materials Science and Engineering B, 141(1–2), 61–70.

    Article  Google Scholar 

  47. Lozano, K., & Barrera, E. V. (2001). Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science, 79(1), 125–133.

    Article  Google Scholar 

  48. Nataraj, S. K., Kim, B. H., Yun, J. H., Lee, D. H., Aminabhavi, T. M., & Yang, K. S. (2009). Morphological characterization of electrospun carbon nanofiber mats of polyacrylonitrile containing heteropolyacids. Synthetic Metals, 159(14), 1496–1504.

    Article  Google Scholar 

  49. Nouranian, S., Jang, C., Lacy, T. E., Gwaltney, S. R., Toghiani, H., & Pittman, C. U, Jr. (2011). Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor-grown carbon nanofiber and their implications for composite interphase formation. Carbon, 49(10), 3219–3232.

    Article  Google Scholar 

  50. Jang, C., Nouranian, S., Lacy, T. E., Gwaltney, S. R., Toghiani, H., & Pittman, C. U, Jr. (2012). Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon, 50(3), 748–760.

    Article  Google Scholar 

  51. Mapkar, J. A., Belashi, A., Berhan, L. M., & Coleman, M. R. (2013). Formation of high loading flexible carbon nanofiber network composites. Composites Science and Technology, 75, 1–6.

    Article  Google Scholar 

  52. Mittal, V. (2011). In-situ synthesis of polymer nanocomposites. In: In-situ synthesis of polymer nanocomposites (pp. 1–25). GmbH & Co. KGaA: Wiley-VCH Verlag.

    Google Scholar 

  53. Pleshakov, V. F. (2011). Computer models of helical nanostructures. Journal of Modern Physics, 2(3), 97–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Poveda .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Poveda, R.L., Gupta, N. (2016). Carbon Nanofibers: Structure and Fabrication. In: Carbon Nanofiber Reinforced Polymer Composites. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23787-9_2

Download citation

Publish with us

Policies and ethics