Skip to main content

Discovering Low Overlapping Biclusters in Gene Expression Data Through Generic Association Rules

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9344))

Abstract

Biclustering is a thriving and of paramount task in many biomedical applications. Indeed, the biclusters aim, among-others, the discovery of unveiling principles of cellular organizations and functions, to cite but a few.

In this paper, we introduce a new algorithm called, BiARM, that aims to efficiently extract the most meaningful, low overlapping biclusters. The main originality of our algorithm stands in the fact that it relies on the extraction of generic association rules. The reduced set of association rules faithfully mimics relationships between sets of genes, proteins, or other cell members and gives important information for the analysis of diseases. The effectiveness of our method has been proved through extensive carried out experiments on real-life DNA microarray data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Which may be either monotone increasing, monotone decreasing, up-down or down-up, etc.

  2. 2.

    Available at https://github.com/mehdi-kaytoue/trimax.

  3. 3.

    Available at http://arep.med.harvard.edu/biclustering/.

  4. 4.

    Available at http://arep.med.harvard.edu/biclustering/.

  5. 5.

    Available at http://llama.mshri.on.ca/funcassociate/.

  6. 6.

    The adjusted significance scores asses genes in each bicluster, which indicates how well they match with the different GO categories.

  7. 7.

    Available at http://db.yeastgenome.org/cgi-bin/GO/goTermFinder .

  8. 8.

    http://geneontology.org/.

References

  1. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J.J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  2. Ayadi, W.: Algorithmes Systematiques et Stochastiques de Biregroupement pour l’Analyse des Donnees Biopuces. Ph.D. thesis, University of Angers, France (2011)

    Google Scholar 

  3. Ayadi, W., Elloumi, M., Hao, J.K.: A biclustering algorithm based on a bicluster enumeration tree: application to dna microarray data. BioData Min. 2, 9 (2009)

    Article  Google Scholar 

  4. Ayadi, W., Elloumi, M., Hao, J.K.: Bicfinder: a biclustering algorithm for microarray data analysis. Knowl. Inf. Syst. 30(2), 341–358 (2012)

    Article  Google Scholar 

  5. Ayadi, W., Elloumi, M., Hao, J.K.: Bimine+: An efficient algorithm for discovering relevant biclusters of dna microarray data. Knowl.-Based Syst. 35, 224–234 (2012)

    Article  Google Scholar 

  6. Ayadi, W., Elloumi, M., Hao, J.-K.: Iterated local search for biclustering of microarray data. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 219–229. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Ben-Dor, A., Chor, B., Karp, R.M., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving submatrix problem. J. Comput. Biol. 10(3/4), 373–384 (2003)

    Article  Google Scholar 

  8. Bergmann, S., Ihmels, J., Barkai, N.: Defining transcription modules using large-scale gene expression data. Bioinformatics 20(13), 1993–2003 (2004)

    Article  Google Scholar 

  9. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with funcassociate. Bioinformatics 19, 2502–2504 (2003)

    Article  Google Scholar 

  10. Boutsinas, B.: A new biclustering algorithm based on association rule mining. Int. J. Artif. Intell. Tools 22(3) (2013). http://dx.doi.org/10.1142/S0218213013500176

  11. Cheng, K.O., Law, N.F., Siu, W.C., Liew, A.W.C.: Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinform. 210(9), 1282–1283 (2008)

    Google Scholar 

  12. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of ISMB, UC San Diego, California, pp. 93–103 (2000)

    Google Scholar 

  13. Cheng, Y., Church, G.M.: Biclustering of expression data. Technical report, supplementary information (2006)

    Google Scholar 

  14. Das, S., Idicula, S.M.: Application of cardinality based grasp to the biclustering of gene expression data. Int. J. Comput. Appl. 1, 44–53 (2010)

    Google Scholar 

  15. Divina, F., Aguilar-Ruiz, J.S.: A multi-objective approach to discover biclusters in microarray data. In: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7–11, 2007. pp. 385–392 (2007). http://doi.acm.org/10.1145/1276958.1277038

  16. Divina, F., AguilarRuiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)

    Article  Google Scholar 

  17. Freitas, A., Ayadi, W., Elloumi, M., Oliveira, L.J., Hao, J.K.: Survey on biclustering of gene expression data. In: Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data. pp. 591–608 (2013)

    Google Scholar 

  18. Gallo, C.A., Carballido, J.A., Ponzoni, I.: Microarray biclustering: a novel memetic approach based on the PISA platform. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 44–55. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: \(\cal IGB\): a new informative generic base of association rules. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 81–90. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11430919_11

    Chapter  Google Scholar 

  20. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et du jura. Bulletin de la socit Vaudoise des Siences Naturelles 37, 547–579 (1901)

    Google Scholar 

  21. Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1–2), 55–79 (2014). http://dx.doi.org/10.1007/s10472-013-9379-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Biclustering Numerical Data in Formal Concept Analysis. In: Jäschke, R. (ed.) ICFCA 2011. LNCS, vol. 6628, pp. 135–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Liu, J., Li, Z., Hu, X., Chen, Y.: Biclustering of microarray data with MOSPO based on crowding distance. BMC Bioinform. 10(S-4) (2009). http://dx.doi.org/10.1186/1471-2105-10-S4-S9

  24. Liu, J., Li, Z., Liu, F., Chen, Y.: Multi-objective particle swarm optimization biclustering of microarray data. In: 2008 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2008, 3–5 November 2008, Philadephia, Pennsylvania, USA, pp. 363–366 (2008). http://doi.ieeecomputersociety.org/10.1109/BIBM.2008.17

  25. Luan, Y., Li, H.: Clustering of time-course gene expression data using a mixed-effects model with b-splines. Bioinformatics 19(4), 474–482 (2003)

    Article  Google Scholar 

  26. Martínez, R., Pasquier, N., Pasquier, C.: Genminer: mining non-redundant association rules from integrated gene expression data and annotations. Bioinformatics 24(22), 2643–2644 (2008). http://dx.doi.org/10.1093/bioinformatics/btn490

    Article  Google Scholar 

  27. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  28. Mondal, K.C., Pasquier, N.: Galois closure based association rule mining from biological data. In: Elloumi, M., Zomaya, A.Y. (eds.) Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data, pp. 761–802. Wiley, USA (2014)

    Google Scholar 

  29. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A new approach for association rule mining and bi-clustering using formal concept analysis. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 86–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 15, 57–69 (2003)

    Article  Google Scholar 

  31. Peddada, S., Lobenhofer, E., Li, L., Afshari, C., Weinberg, C.: Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19, 834–841 (2003)

    Article  Google Scholar 

  32. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  33. Serin, A., Vingron, M.: Debi: discovering differentially expressed biclusters using a frequent itemset approach. Algorithms Mol. Biol. 6, 18–29 (2011). http://dx.doi.org/10.1186/1748-7188-6-18

    Article  Google Scholar 

  34. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136–S144 (2002)

    Article  Google Scholar 

  35. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Process. Syst. 50, 267–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Houari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Houari, A., Ayadi, W., Yahia, S.B. (2015). Discovering Low Overlapping Biclusters in Gene Expression Data Through Generic Association Rules. In: Bellatreche, L., Manolopoulos, Y. (eds) Model and Data Engineering. Lecture Notes in Computer Science(), vol 9344. Springer, Cham. https://doi.org/10.1007/978-3-319-23781-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23781-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23780-0

  • Online ISBN: 978-3-319-23781-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics