Skip to main content

The Genetics of Narcolepsy

  • Chapter
Narcolepsy

Abstract

Human narcolepsy is not a familial or classic genetic disorder. However, autosomal recessive canine narcolepsy and genetic manipulation models in rodents have identified the hypothalamic perifornical hypocretin (orexin) neuropeptidergic system as key to the disease. In humans, no functionally important genetic abnormities in the hypocretin gene or genes for hypocretin peptide receptors have been observed, but human narcolepsy is associated with hypocretin cell loss and reduced hypocretin levels in the cerebrospinal fluid. The causes of hypocretin cell loss in humans are undetermined, but genetic studies have suggested an autoimmune aetiology. Narcolepsy has a close association to the human leukocyte antigen class II antigen HLA DQB1*0602 present in the majority of cases with narcolepsy with cataplexy. Furthermore, recent studies have identified a narcolepsy-associated polymorphism in the TRA@ (T-cell receptor alpha) gene. HLA class II antigens on antigen-presenting cells present antigens (foreign and self) to the T-cell receptor, with subsequent immune system mobilisation against the specific antigen and cells that express it. Other polymorphisms identified in narcolepsy include those affecting key processes that are important in the immune response. Thus, the genetic case for an autoimmune basis for narcolepsy with cataplexy is compelling. Nonimmune system genes have also been implicated in narcolepsy whose influence appears to be more physiological, but may shed light to the aetiology of narcolepsy without cataplexy and other hypersomnias. The increased availability of more advanced genetic techniques is likely to shed further light on narcolepsy development, progression and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schenck CH, Bassetti CL, Arnulf I, Mignot E. English translations of the first clinical reports on narcolepsy and cataplexy by Westphal and Gélineau in the late 19th century, with commentary. J Clin Sleep Med. 2007;3:301–11.

    PubMed  PubMed Central  Google Scholar 

  2. Chabas D, Taheri S, Renier C, Mignot E. The genetics of narcolepsy. Annu Rev Genomics Hum Genet. 2003;4:459–83.

    Article  PubMed  CAS  Google Scholar 

  3. Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50:S16–22.

    Article  PubMed  CAS  Google Scholar 

  4. Denis D, et al. A twin and molecular genetics study of sleep paralysis and associated factors. J Sleep Res. 2015;24(4):438–46. doi:10.1111/jsr.12282.

    Article  PubMed  Google Scholar 

  5. Bell CC, Dixie-Bell DD, Thompson B. Further studies on the prevalence of isolated sleep paralysis in black subjects. J Natl Med Assoc. 1986;78:649–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Taheri S, Mignot E. The genetics of sleep disorders. Lancet Neurol. 2002;1:242–50.

    Article  PubMed  CAS  Google Scholar 

  7. Taheri S. The genetics of sleep disorders. Minerva Med. 2004;95:203–12.

    PubMed  CAS  Google Scholar 

  8. Taheri S, Zeitzer JM, Mignot E. The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci. 2002;25:283–313.

    Article  PubMed  CAS  Google Scholar 

  9. Lin L, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    Article  PubMed  CAS  Google Scholar 

  10. Taheri S, Hafizi S. The orexins/hypocretins: hypothalamic peptides linked to sleep and appetite. Psychol Med. 2002;32:955–8.

    Article  PubMed  Google Scholar 

  11. Taheri S, Bloom S. Orexins/hypocretins: waking up the scientific world. Clin Endocrinol (Oxf). 2001;54:421–9.

    Article  CAS  Google Scholar 

  12. Sakurai T, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85. 1 page following 696.

    Article  PubMed  CAS  Google Scholar 

  13. Hungs M, et al. Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Res. 2001;11:531–9.

    Article  PubMed  CAS  Google Scholar 

  14. Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.

    Article  PubMed  CAS  Google Scholar 

  15. Hara J, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–54.

    Article  PubMed  CAS  Google Scholar 

  16. Willie JT, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron. 2003;38:715–30.

    Article  PubMed  CAS  Google Scholar 

  17. Mieda M, Tsujino N, Sakurai T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front Endocrinol. 2013;4:57.

    Article  CAS  Google Scholar 

  18. Ripley B, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology. 2001;57:2253–8.

    Article  PubMed  CAS  Google Scholar 

  19. Peyron C, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.

    Article  PubMed  CAS  Google Scholar 

  20. Hungs M, Lin L, Okun M, Mignot E. Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy. Neurology. 2001;57:1893–5.

    Article  PubMed  CAS  Google Scholar 

  21. Dong XS, et al. Hypocretin (orexin) neuropeptide precursor gene, HCRT, polymorphisms in early-onset narcolepsy with cataplexy. Sleep Med. 2013;14:482–7.

    Article  PubMed  Google Scholar 

  22. Juji T, Matsuki K, Tokunaga K, Naohara T, Honda Y. Narcolepsy and HLA in the Japanese. Ann N Y Acad Sci. 1988;540:106–14.

    Article  PubMed  CAS  Google Scholar 

  23. Juji T, Satake M, Honda Y, Doi Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens. 1984;24:316–9.

    Article  PubMed  CAS  Google Scholar 

  24. Marcadet A, et al. DNA polymorphism related to HLA-DR2 Dw2 in patients with narcolepsy. Immunogenetics. 1985;22:679–83.

    Article  PubMed  CAS  Google Scholar 

  25. Mueller-Eckhardt G, Strohmaier P, Schendel DJ, Meier-Ewert K, Mueller-Eckhardt C. Possible male segregation distortion of DR2 haplotypes in narcolepsy patients. Hum Immunol. 1987;20:189–93.

    Article  PubMed  CAS  Google Scholar 

  26. Neely S, Rosenberg R, Spire JP, Antel J, Arnason BG. HLA antigens in narcolepsy. Neurology. 1987;37:1858–60.

    Article  PubMed  CAS  Google Scholar 

  27. Mignot E, Hayduk R, Black J, Grumet FC, Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20:1012–20.

    PubMed  CAS  Google Scholar 

  28. Matsuki K, et al. DQ (rather than DR) gene marks susceptibility to narcolepsy. Lancet. 1992;339:1052.

    Article  PubMed  CAS  Google Scholar 

  29. Mignot E, et al. Extensive HLA class II studies in 58 non-DRB1*15 (DR2) narcoleptic patients with cataplexy. Tissue Antigens. 1997;49:329–41.

    Article  PubMed  CAS  Google Scholar 

  30. Pelin Z, Guilleminault C, Risch N, Grumet FC, Mignot E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens. 1998;51:96–100.

    Article  PubMed  CAS  Google Scholar 

  31. Mignot E, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet. 2001;68:686–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hong S-C, et al. DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Hum Immunol. 2007;68:59–68.

    Article  PubMed  CAS  Google Scholar 

  33. Watson NF, Ton TGN, Koepsell TD, Gersuk VH, Longstreth WT. Does narcolepsy symptom severity vary according to HLA-DQB1*0602 allele status? Sleep. 2010;33:29–35.

    PubMed  PubMed Central  Google Scholar 

  34. Han F, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9:e1003880.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ollila HM, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96:136–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Dauvilliers Y, et al. Post-H1N1 narcolepsy-cataplexy. Sleep. 2010;33:1428–30.

    PubMed  PubMed Central  Google Scholar 

  37. Montplaisir J, et al. Risk of narcolepsy associated with inactivated adjuvanted (AS03) A/H1N1 (2009) pandemic influenza vaccine in Quebec. PLoS One. 2014;9:e108489.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tafti M, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2014;37:19–25.

    PubMed  PubMed Central  Google Scholar 

  39. Ollila HM, Fernandez-Vina M, Mignot E. HLA-DQ allele competition in narcolepsy: a comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2015;38:147–51.

    PubMed  PubMed Central  Google Scholar 

  40. Tafti M. HLA-DQ allele competition in narcolepsy: where is the evidence? Sleep. 2015;38:153–4.

    PubMed  PubMed Central  Google Scholar 

  41. Goel N, Banks S, Mignot E, Dinges DF. DQB1*0602 predicts interindividual differences in physiologic sleep, sleepiness, and fatigue. Neurology. 2010;75:1509–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hallmayer J, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet. 2009;41:708–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Faraco J, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 2013;9:e1003270.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Kornum BR, et al. Common variants in P2RY11 are associated with narcolepsy. Nat Genet. 2011;43:66–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Holm A et al. EIF3G is associated with narcolepsy across ethnicities. Eur J Hum Genet. (2015). Doi: 10.1038/ejhg.2015.4.

    Google Scholar 

  46. Toyoda H et al. A Polymorphism in CCR1/CCR3 Is Associated with Narcolepsy. Brain Behav Immun. (2015). Doi: 10.1016/j.bbi.2015.05.003.

    Google Scholar 

  47. Katzav A, et al. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J Autoimmun. 2013;45:24–30.

    Article  PubMed  CAS  Google Scholar 

  48. Ambati A, et al. Increased β-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases. J Intern Med. 2015;278(3):264–76. doi:10.1111/joim.12355.

    Article  PubMed  CAS  Google Scholar 

  49. Lind A, et al. A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the Pandemrix vaccination campaign in Sweden 2009–2010. J Autoimmun. 2014;50:99–106.

    Article  PubMed  CAS  Google Scholar 

  50. Tobias ES, Tolmie JL, Stephenson JBP. Cataplexy in the Prader-Willi syndrome. Arch Dis Child. 2002;87:170.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Weselake SV, et al. Prader-Willi syndrome, excessive daytime sleepiness, and narcoleptic symptoms: a case report. J Med Case Rep. 2014;8:127.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mignot E, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59:1553–62.

    Article  PubMed  Google Scholar 

  53. Smit LS, Lammers GJ, Catsman-Berrevoets CE. Cataplexy leading to the diagnosis of Niemann-Pick disease type C. Pediatr Neurol. 2006;35:82–4.

    Article  PubMed  Google Scholar 

  54. Vossler DG, Wyler AR, Wilkus RJ, Gardner-Walker G, Vlcek BW. Cataplexy and monoamine oxidase deficiency in Norrie disease. Neurology. 1996;46:1258–61.

    Article  PubMed  CAS  Google Scholar 

  55. Dauvilliers Y, Tafti M, Landolt HP. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev. 2014;22:47–53. doi:10.1016/j.smrv.2014.10.006.

    Article  PubMed  Google Scholar 

  56. Hor H, et al. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am J Hum Genet. 2011;89:474–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Moghadam KK, et al. Narcolepsy is a common phenotype in HSAN IE and ADCA-DN. Brain J Neurol. 2014;137:1643–55.

    Article  Google Scholar 

  58. Winkelmann J, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21:2205–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Pedroso JL et al. A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient. Sleep. 2013;36: 1257–59, 1259A.

    Google Scholar 

  60. Miyagawa T, et al. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet. 2008;40:1324–8.

    Article  PubMed  CAS  Google Scholar 

  61. Miyagawa T, et al. Polymorphism located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype confer susceptibility to CNS hypersomnias (essential hypersomnia). PLoS One. 2009;4:e5394.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shimada M, et al. An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Hum Genet. 2010;128:433–41.

    Article  PubMed  Google Scholar 

  63. Luca G, et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J Sleep Res. 2013;22:482–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrad Taheri MBBS PhD FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taheri, S. (2016). The Genetics of Narcolepsy. In: Goswami, M., Thorpy, M., Pandi-Perumal, S. (eds) Narcolepsy. Springer, Cham. https://doi.org/10.1007/978-3-319-23739-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23739-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23738-1

  • Online ISBN: 978-3-319-23739-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics