Skip to main content

Video Bioinformatics: A New Dimension in Quantifying Plant Cell Dynamics

  • Chapter
  • First Online:
Video Bioinformatics

Part of the book series: Computational Biology ((COBO,volume 22))

  • 1359 Accesses

Abstract

Microscopy of plant cells has evolved greatly within the past 50 years. Advances in live cell imaging, automation, optics, video microscopy, and the need for high content studies has stimulated the development of computational tools for manipulating, managing, and interpreting quantitative data. These tools automatically and semiautomatically determine, sizes, signal intensities, velocities, classes, and many other features of cells and subcellular structures. Quantitative methods provide data that is a basis for mathematical models and statistical analyses that lead the way to a quantitative systems outlook to cell biology. Four-dimensional video analysis provides vital data concerning the often ignored temporal dynamics within a cell. Here, we will review studies employing technology to detect regions of interest using segmentation, classify data using machine learning and track dynamics in living cells using video analysis. Many of the live cell studies presented would have been impractical without these advanced computational techniques. These examples illustrate the utility and potential for video bioinformatics to augment our knowledge of the dynamics of cells and cellular components in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhanu B (2009) IGERT Program. In: The UC Riverside integrated graduate education research and training program in video bioinformatics. Univeristy of California, Riverside, 26 Oct 2009. Web. 24 Mar 2014

    Google Scholar 

  2. Peterson RC, Wolffsohn JS (2007) Sensitivity and reliability of objective image analysis compared to subjective grading of bulbar hyperaemia. Br J Ophthalmol 91(11):1464–1466

    Article  Google Scholar 

  3. Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, Van Damme D, Leonard M, Yang Z, Girke T, Schmid SL, Russinova E, Friml J, Raikhel NV, Hicks GR (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci USA 108(43):17850–17855

    Article  Google Scholar 

  4. Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci USA 105(24):8464–8469

    Article  Google Scholar 

  5. Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S (2012) Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24(10):4205–4219

    Article  Google Scholar 

  6. Tataw OM, Liu M, Roy-Chowdhurry A, Yadav RK, Reddy GV (2010) Pattern analysis of stem cell growth dynamics in the shoot apex of arabidopsis. In: 17th IEEE international conference on image processing (ICIP), pp 3617–3620

    Google Scholar 

  7. Liu J, Elmore JM, Lin ZJ, Coaker G (2011) A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9(2):137–146

    Article  Google Scholar 

  8. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162(2):675–688

    Article  Google Scholar 

  9. Domozych DS (2012) The quest for four-dimensional imaging in plant cell biology: it’s just a matter of time. Ann Bot 110(2):461–474

    Article  Google Scholar 

  10. Brandizzi F, Fricker M, Hawes C (2002) A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3(7):520–530

    Article  Google Scholar 

  11. Rajadhyaksha M, Anderson R, Webb RH (1999) Video-rate confocal scanning laser microscope for imaging human tissues; In Vivo. Appl Opt 38(10):2105–2115

    Article  Google Scholar 

  12. Nakano A (2002) Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct 27(5):349–355

    Article  Google Scholar 

  13. Meyer AJ, Fricker MD (2000) Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy. J Microsc 198(3):174–181

    Article  Google Scholar 

  14. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53(1):186–196

    Article  Google Scholar 

  15. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796

    Article  Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  Google Scholar 

  17. Hicks GR, Raikhel NV (2009) Opportunities and challenges in plant chemical biology. Nat Chem Biol 5(5):268–272

    Article  Google Scholar 

  18. Kuehn M, Hausner M, Bungartz HJ, Wagner M, Wilderer PA, Wuertz S (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64(11):4115–4127

    Google Scholar 

  19. Ung N, Brown MQ, Hicks GR, Raikhel NV (2012) An approach to quantify endomembrane dynamics in pollen utilizing bioactive chemicals. Mol Plant

    Google Scholar 

  20. Eils R, Athale C (2003) Computational imaging in cell biology. J Cell Biol 161(3):477–481

    Article  Google Scholar 

  21. Cheung G, Cousin MA (2011) Quantitative analysis of synaptic vesicle pool replenishment in cultured cerebellar granule neurons using FM dyes. J Vis Exp (57)

    Google Scholar 

  22. Shapiro LG, Stockman GC (2001) Computer Vision. New Jersey, Prentice-Hall, pp 279–325. ISBN 0-13-030796-3

    Google Scholar 

  23. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 114(23):4153–4160

    Google Scholar 

  24. Sethuraman V, Taylor S, Pridmore T, French A, Wells D (2009) Segmentation and tracking of confocal images of Arabidopsis thaliana root cells using automatically-initialized Network Snakes. In: 3rd international conference on bioinformatics and biomedical engineering, 2009. ICBBE 2009

    Google Scholar 

  25. Salomon S, Grunewald D, Stüber K, Schaaf S, MacLean D, Schulze-Lefert P, Robatzek S (2010) High-throughput confocal imaging of intact live tissue enables quantification of membrane trafficking in arabidopsis. Plant physiol 154(3):1096

    Google Scholar 

  26. Miart F, Desprez T, Biot E, Morin H, Belcram K, Höfte H, Gonneau M, Vernhettes S (2013) Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J

    Google Scholar 

  27. Illingworth J, Kittler J (1987) The adaptive Hough transform. IEEE Trans Pattern Anal Mach Intell 5:690–698

    Article  Google Scholar 

  28. Bensch R, Ronneberger O, Greese B, Fleck C, Wester K, Hulskamp M, Burkhardt H (2009) Image analysis of arabidopsis trichome patterning in 4D confocal datasets. In: IEEE international symposium on biomedical imaging: from nano to macro, 2009. ISBI’09, pp 742–745

    Google Scholar 

  29. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  30. Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8):721–728

    Article  Google Scholar 

  31. Collinet C, Stöter M, Bradshaw CR, Samusik N, Rink JC, Kenski D, Habermann B, Buchholz F, Henschel R, Mueller MS, Nagel WE, Fava E, Kalaidzidis Y, Zerial M (2010) Systems survey of endocytosis by multiparametric image analysis. Nature 464(7286):243–249

    Article  Google Scholar 

  32. Liu K, Schmidt T, Blein T, Durr J, Palme K, Ronneberger O (2013) Joint 3d cell segmentation and classification in the arabidopsis root using energy minimization and shape priors. In: IEEE 10th international symposium on biomedical imaging (ISBI), pp 422–425

    Google Scholar 

  33. Sankar M, Nieminen K, Ragni L, Xenarios I, Hardtke CS (2014) Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. eLife 3

    Google Scholar 

  34. Carlsson K, Danielsson P-E, Liljeborg A, Majlöf L, Lenz R, Åslund N (1985) Three-dimensional microscopy using a confocal laser scanning microscope. Opt Lett 10(2):53–55

    Article  Google Scholar 

  35. Racine V, Sachse M, Salamero J, Fraisier V, Trubuil A, Sibarita JB (2007) Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc 225(Pt 3):214–228

    Article  MathSciNet  Google Scholar 

  36. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26(1):373–399

    Article  Google Scholar 

  37. Swedlow JR, Eliceiri KW (2009) Open source bioimage informatics for cell biology. Trends Cell Biol 19(11):656–660

    Article  Google Scholar 

  38. Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci USA 106(51):21465–21471

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) in Video Bioinformatics (DGE-0903667) and NSF Graduate Research Fellowship Program (GRFP). Nolan Ung is an IGERT and GRFP Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolan Ung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ung, N., Raikhel, N.V. (2015). Video Bioinformatics: A New Dimension in Quantifying Plant Cell Dynamics. In: Bhanu, B., Talbot, P. (eds) Video Bioinformatics. Computational Biology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23724-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23724-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23723-7

  • Online ISBN: 978-3-319-23724-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics