Skip to main content

Complex Aggregates over Clusters of Elements

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9046))

Abstract

Complex aggregates have been proposed as a way to bridge the gap between approaches that handle sets by imposing conditions on specific elements, and approaches that handle them by imposing conditions on aggregated values. A complex aggregate summarises a subset of the elements in a set, where this subset is defined by conditions on the attribute values. In this paper, we present a new type of complex aggregate, where this subset is defined to be a cluster of the set. This is useful if subsets that are relevant for the task at hand are difficult to describe in terms of attribute conditions. This work is motivated from the analysis of flow cytometry data, where the sets are cells, and the subsets are cell populations. We describe two approaches to aggregate over clusters on an abstract level, and validate one of them empirically, motivating future research in this direction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aghaeepour, N., Finak, G., Consortium, F., Consortium, D., Hoos, H., Mosmann, T., Brinkman, R., Gottardo, R., Scheuermann, R.: Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10(3), 228–238 (2013)

    Article  Google Scholar 

  2. Aghaeepour, N., Nikolic, R., Hoos, H.H., Brinkman, R.R.: Rapid cell population identification in flow cytometry data. Cytometry Part A 79(1), 6–13 (2011)

    Article  Google Scholar 

  3. Blockeel, H., De Raedt, L.: Top-down induction of first order logical decision trees. Artif. Intell. 101(1–2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the 15th International Conference on Machine Learning, pp. 55–63 (1998)

    Google Scholar 

  5. Blockeel, H., Bruynooghe, M.: Aggregation versus selection bias, and relational neural networks. In: IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, SRL-2003 (2003)

    Google Scholar 

  6. Charnay, C., Lachiche, N., Braud, A.: Incremental construction of complex aggregates: Counting over a secondary table. In: Online Preprints of 23th International Conference on Inductive Logic Programming, pp. 1–6 (2013)

    Google Scholar 

  7. Finak, G., Bashashati, A., Brinkman, R., Gottardo, R.: Merging mixture components for cell population identification in flow cytometry. Adv. Bioinform. 2009, 12 (2009)

    Article  Google Scholar 

  8. Frank, R., Moser, F., Ester, M.: A method for multi-relational classification using single and multi-feature aggregation functions. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 430–437. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Frasconi, P., Jaeger, M., Passerini, A.: Feature discovery with type extension trees. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 122–139. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Herzenberg, L., Tung, J., Moore, W., Herzenberg, L., Parks, D.: Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7(7), 681–685 (2006)

    Article  Google Scholar 

  11. Jaeger, M., Lippi, M., Passerini, A., Frasconi, P.: Type extension trees for feature construction and learning in relational domains. Artif. Intell. 204, 30–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knobbe, A.J., Siebes, A., Marseille, B.: Involving aggregate functions in multi-relational search. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, p. 287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Koller, D.: Probabilistic relational models. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, p. 3. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) Proceedings of the Work-in-Progress Track at the 13th International Conference on Inductive Logic Programming, pp. 30–39 (2003)

    Google Scholar 

  15. Muggleton, S. (ed.): Inductive Logic Programming. Academic Press, New York (1992)

    MATH  Google Scholar 

  16. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 625–630. ACM Press (2003)

    Google Scholar 

  17. Perlich, C., Provost, F.: Aggregation-based feature invention and relational concept classes. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 167–176. ACM Press (2003)

    Google Scholar 

  18. Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background knowledge by inductive logic programming systems. In: De Raedt, L. (ed.) Proceedings of the 5th International Workshop on Inductive Logic Programming, pp. 199–230 (1995)

    Google Scholar 

  19. Sugár, I.P., Sealfon, S.C.: Misty mountain clustering: application to fast unsupervised flow cytometry gating. BMC Bioinf. 11(1), 502 (2010)

    Article  Google Scholar 

  20. Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 384–396. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests: learning relational classifiers with complex aggregates. Mach. Learn. 64(1–3), 149–182 (2006)

    Article  MATH  Google Scholar 

  22. Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Zare, H., Shooshtari, P., Gupta, A., Brinkman, R.R.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinf. 11(1), 403 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Celine Vens is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Sofie Van Gassen is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Vens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vens, C., Van Gassen, S., Dhaene, T., Saeys, Y. (2015). Complex Aggregates over Clusters of Elements. In: Davis, J., Ramon, J. (eds) Inductive Logic Programming. Lecture Notes in Computer Science(), vol 9046. Springer, Cham. https://doi.org/10.1007/978-3-319-23708-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23708-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23707-7

  • Online ISBN: 978-3-319-23708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics