Skip to main content

Nanomaterials-Embedded Liquid Crystal Elastomers in Electronics Devices Application

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Liquid crystal elastomers (LCEs) are soft, elastic, durable, and lightweight materials that offer different physical phenomena with the presence of external stimuli. Cross-linked natural three-dimensional structures of liquid-crystalline polymer chains (nematic, cholesteric, or smectic) form the elastic network of LCEs. The hybridization by dispersing nanoparticles (NPs) or nanotubes (NTs) in LCEs matrix leads to change in its physical as well as chemical properties. This chapter focuses on recent developments of NPs- and NTs-embedded LCEs that has provided many opportunities for a wide range of applications of electronic devices including actuators, tactile display, soft robotics, and microtechnology. LCEs network with reinforced nanomaterials provide better electrical, optical, thermal, and mechanical properties resulting enhancement of performance in its targeted applications. Initially, brief synthesis processes of zero- to one-dimensional nanomaterials-embedded LCEs composites will be discussed by explaining the core mechanism followed by physical properties. Subsequently, details of devices application such as soft robotics, artificial heliotropism, refreshable braille displays, reversible shape-changing artificial muscles, and shape memory will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875

    Article  CAS  Google Scholar 

  2. Shenoy DK, Thomsen DL III, Srinivasan A, Keller P, Ratna BR (2002) Carbon coated liquid crystal elastomer film for artificial muscle applications. Sens Actuators A 96(2–3):184–188

    Article  CAS  Google Scholar 

  3. Li MH, Keller P (2006) Artificial muscles based on liquid crystal elastomers. Philos Trans R Soc A 364:2763–2777

    Article  CAS  Google Scholar 

  4. Li Y, Pruitt C, Rios O, Wei L, Rock M, Keum JK, McDonald AG, Kessler MR (2015) Controlled shape memory behavior of a smectic main-chain liquid crystalline elastomer. Macromolecules. doi:10.1021/acs.macromol.5b00519

    Google Scholar 

  5. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558

    Article  CAS  Google Scholar 

  6. Warner M, Bladon P, Terentjev EM (1994) Soft elasticity—deformation without resistance in liquid-crystal elastomers. J Phys II 4(1):93–102

    CAS  Google Scholar 

  7. Tajbakhsh AR, Terentjev EM (2001) Spontaneous thermal expansion of nematic elastomers. Eur Phys J E 6(2):181–188

    Article  CAS  Google Scholar 

  8. Li M-H, Keller P, Li B, Wang X, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15(7–8):569–572

    Article  CAS  Google Scholar 

  9. Sawa Y, Urayama K, Takigawa T, DeSimone A, Teresi L (2010) Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules 43(9):4362–4369

    Article  CAS  Google Scholar 

  10. Yamada M, Kondo M, Mamiya J-I, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. AngewandteChemie Int Ed 47(27):4986–4988

    Article  CAS  Google Scholar 

  11. Sánchez-Ferrer A, Fischl T, Stubenrauch M, Wurmus H, Hoffmann M, Finkelmann H (2009) Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macromol Chem Phys 210(20):1671–1677

    Article  Google Scholar 

  12. Sánchez-Ferrer A, Fischl T, Stubenrauch M, Albrecht A, Wurmus H, Hoffmann M, Finkelmann H (2011) Liquid-crystalline elastomer microvalve for microfluidics. Advanced Materials 23(39):4526–4530

    Article  Google Scholar 

  13. Finkelmann H, Kim ST, Muñoz S, Palffy-Muhoray P, Taheri B (2001) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13(14):1069–1072

    Article  CAS  Google Scholar 

  14. Camargo CJ, Campanella H, Marshall JE, Torras N, Zinoviev K, Terentjev EM, Esteve J (2012) Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable Braille displays. J Micromech Microeng 22(7):075009 (9 pp). doi:10.1088/0960-1317/22/7/075009.15

  15. Torras N, Zinoviev KE, Marshall JE, Terentjev EM, Esteve J (2011) Bending kinetics of a photo-actuating nematic elastomer cantilever. Appl Phys Lett 99(25):254102

    Article  Google Scholar 

  16. Li Z, Yang Y, Qin B, Zhang X, Tao L, Wei Y, Ji Y (2014) Liquid crystalline network composites reinforced by silica nanoparticles. Materials 7(7):5356–5365

    Article  CAS  Google Scholar 

  17. Haberl JM, Sánchez-Ferrer A, Mihut AM, Dietsch H, Hirt AM, Mezzenga R (2013) Liquid-crystalline elastomer-nanoparticle hybridswith reversible switch of magnetic memory. Adv Mater 25(12):1787–1791

    Article  CAS  Google Scholar 

  18. Domenici V, Zupančič B, Laguta VV, Belous AG, V’yunov OI, Remškar M, Zalar B (2010) PbTiO3 nanoparticles embedded in a liquid crystalline elastomer matrix: structural and ordering properties. J Phys Chem C114(24):10782–10789

    Google Scholar 

  19. Domenici V, Conradi M, Remškar M, Viršek M, Zupančič B, Mrzel A, Chambers M, Zalar B (2011) New composite films based on MoO3−x nanowires aligned in a liquid single crystal elastomer matrix. J Mater Sci 46(10):3639–3645

    Google Scholar 

  20. Haberl JM, Sánchez-Ferrer A, Mihut AM, Dietsch H, Hirtc AM, Mezzenga R (2013) Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer–maghemite nanoparticle hybrid nanocomposites. Nanoscale 5(12):5539–5548

    Google Scholar 

  21. Ji Y, Marshall JE, Terentjev EM (2012) Nanoparticle-liquid crystalline elastomer composites. Polymers 4(1):316–340

    Article  Google Scholar 

  22. Chambers M, Finkelmann H, Remskar M, Sanchez-Ferrer A, Zalar B, Zumer S (2009) Liquid crystal elastomer–nanoparticle systems for actuation. J Mater Chem 19(11):1524–1531

    Article  CAS  Google Scholar 

  23. Li C, Liu Y, Huang X, Jiang H (2012) Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv Funct Mater 22(24):5166–5174

    Article  CAS  Google Scholar 

  24. Gascon I, Marty JD, Gharsa T, Mingotaud C (2005) Formation of gold nanoparticles in a side-chain liquid crystalline network: influence of the structure and macroscopic order of the material. Chem Mater 17(21):5228–5230

    Article  CAS  Google Scholar 

  25. Shandryuk GA, Matukhina EV, Vasil’ev RB, Rebrov A, Bondarenko GN, Merekalov AS, Gas’kvo AM Talroze RV (2008) Effect of H-bonded liquid crystal polymers on CdSe quantum dot alignment within nanocomposite. Macromolecules 41(6):2178–2185

    Google Scholar 

  26. Song HM, Kim JC, Hong JH, Lee YB, Choi J, Lee JI, Kim WS, Kim JH, Hur NH (2007) Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks. Adv Funct Mater 17(13):2070–2076

    Article  CAS  Google Scholar 

  27. Kaiser A, Winkler M, Krause S, Finkelmann H, Schmidt AM (2009) Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem 19(4):538–543

    Article  CAS  Google Scholar 

  28. Montazami R, Spillmanno CM, Naciri J, Ratna BR (2012) Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sens Actuators A 178:175–178

    Article  CAS  Google Scholar 

  29. Chambers M, Zalar B, Remškar M, Žumer S, Finkelmann H (2006) Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles. Appl Phys Lett 89(24):243116

    Article  Google Scholar 

  30. Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  31. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782

    Article  CAS  Google Scholar 

  32. Cao L, Barsic DN, Guichard AR, Brongersma ML (2007) Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett 7(11):3523–3527

    Article  CAS  Google Scholar 

  33. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  34. Sun Y, Evans JS, Lee T, Senyuk B, Keller P, He S, Smalyukh II (2012) Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett 100(24):241901

    Article  Google Scholar 

  35. Liu X, Wei R, Hoang PT, Wang X, Liu T, Keller P (2015) Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. doi:10.1002/adfm.201500443

    Google Scholar 

  36. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodispersenanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  37. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. AngewandteChemie Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  38. Garcia-Marquez A, Demortiere A, Heinrich B, Guillon D, Begin-Colin S, Donnio B (2011) Iron oxide nanoparticle-containing main-chain liquid crystalline elastomer: towards soft magnetoactive networks. J Mater Chem 21(25):8994–8996

    Article  CAS  Google Scholar 

  39. Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt AM (2010) Liquid crystal elastomers with magnetic actuation. Macromol Symp 291–292(1):186–192

    Article  Google Scholar 

  40. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  41. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228

    Article  CAS  Google Scholar 

  42. Zhou W, Bai X, Wang E, Xie S (2009) Synthesis, structure, and properties of single-walled carbon nanotubes. Adv Mater 21(45):4565–4583

    Article  CAS  Google Scholar 

  43. Hamon MA, Itkis ME, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon RC (2001) Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc 123(45):11292–11293

    Article  CAS  Google Scholar 

  44. Yang L, Setyowati K, Li A, Gong S, Chen J (2008) Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv Mater 20(12):2271–2275

    Article  CAS  Google Scholar 

  45. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98

    Article  CAS  Google Scholar 

  46. Marshall JE, Ji Y, Torras N, Zinoviev K, Terentjev EM (2012) Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter 8(5):1570–1574

    Google Scholar 

  47. Li C, Liu Y, Lo C-W, Jiang H (2011) Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter 7(16):7511–7516

    Article  CAS  Google Scholar 

  48. Courty S, Mine J, Tajbakhsh AR, Terentjev EM (2003) Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys Lett 64(5):654–660

    Article  CAS  Google Scholar 

  49. Koshio A, Yudasaka Zhang M, Iijima S (2001) A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett 1(7):361–363

    Article  CAS  Google Scholar 

  50. Paredes JI, Burghard M (2004) Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20(12):5149–5152

    Article  CAS  Google Scholar 

  51. Huang YY, Terentjev EM (2010) Tailoring the electrical properties of carbon nanotube-polymer composites. Adv Funct Mater 20(23):4062–4068

    Article  CAS  Google Scholar 

  52. JiY Huang YY, Tajbakhsh AR, Terentjev EM (2009) Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents. Langmuir 25(20):12325–12331

    Article  Google Scholar 

  53. Basu R (2013) Effect of carbon nanotubes on the field-induced nematic switching. Appl Phys Lett 103(24):241906

    Article  Google Scholar 

  54. Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci 101(45):15861–15866

    Article  CAS  Google Scholar 

  55. Camargo CJ, Campanella H, Marshall JE, Torras N, Zinoviev K, Terentjev EM, Esteve J (2011) Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol Rapid Commun 32(24):1953–1959

    Article  CAS  Google Scholar 

  56. Camargo CJ, Torras N, Campanella H, Comrie JE, Campo EM, Zinoviev K, Terentjev EM, Esteve J (2011) Light-actuated CNT-doped elastomer blisters towards braille dots. In: 16th international, solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 1594—1597. doi:10.1109/TRANSDUCERS.2011.5969797

  57. Torrasa N, Zinovieva KE, Camargoa CJ et al (2014) Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens Actuators A 208:104–112

    Article  Google Scholar 

  58. Kohlmeyer RR, Chen J (2013) Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. AngewandteChemie 52(35):9234–9237

    CAS  Google Scholar 

  59. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19(21):3480–3484

    Article  CAS  Google Scholar 

  60. Finkelmann H, Shahinpoor M (2002) Electrically controllable liquid crystal elastomer-graphite composite artificial muscles. In: Proceedings of SPIE 4695, smart structures and materials 2002: electroactive polymer actuators and devices (EAPAD). doi:10.1117/12.475190

  61. Chen J, Ramasubramaniam R, Liu H (2004) Carbon nanotube-induced planarization of conjugated polymers in solution. In: Proceedings of materials research society symposium, vol 858. doi:http://dx.doi.org/10.1557/PROC-858-HH12.4

  62. Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22(31):3436–3440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mohiuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohiuddin, M., Tung, T.T. (2016). Nanomaterials-Embedded Liquid Crystal Elastomers in Electronics Devices Application . In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_13

Download citation

Publish with us

Policies and ethics