Skip to main content

Electronic Applications of Chloroprene Rubber and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

This chapter is intended to give an overview of electrical conductivity and dielectric properties of chloroprene rubber (CR) composites with reference to their application in the field of electronics. Influence of different types of filler on the dielectric properties of the CR composites, in a wide frequency range and varying temperature condition, is thoroughly discussed. Type, concentration, and state of dispersion of fillers as well as the polar nature of CR are noticed to play a significant role in governing the electrical conductivity of CR composites. Electrical conductivity studies of carbon black (CB) and carbon fiber-based CR composites are discussed in terms of filler concentration, filler dispersion, and processing techniques. The role of ionic liquid-modified multi-walled carbon nanotube (MWCNT) in improving the electrical conductivity of CR composites is emphatically reviewed. The effects of different types of aging on the electrical properties of CR composites are also focused in this chapter. The CR composites discussed herewith could potentially be used in the field of electromagnetic interference (EMI) shielding, microwave absorbance, and conductive adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

BMI 1:

Butyl -3-methyl imidazolium bis(trifluoromethylsulphonyl) imide

BaHF:

Barium hexaferrite (BaFe12O19)

CB:

Carbon black

CR:

Chloroprene rubber

CNT:

Carbon nanotube

CIP:

Carbonyl-iron powder

DBSA:

Dodecylbenzenesulfonic acid

DE:

Dielectric elastomer

DC:

Direct current

EAP:

Electroactive polymers

EMI:

Electromagnetic interference

FEF:

Fast extrusion furnace

GHz:

Gigahertz

HAF:

High abrasion furnace

MT:

Thermal medium

MWCNT:

Multi-walled carbon nanotube

PANI:

Polyaniline

Phr:

Parts by weight per hundred parts of rubber

PTC:

Positive temperature coefficient

PVC:

Polyvinyl chloride

RAM:

Radar-absorbing material

SAF:

Super abrasion furnace

SE:

Shielding effectiveness

SEM:

Scanning electron microscopy

SRF:

Semi-reinforcing furnace

Co-TiBaHF:

Ti–Co-doped barium hexaferrite

References

  1. Bhattacharya SK, Tummala RR (2000) Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J Mater Sci: Mater Electron 11:253–268

    CAS  Google Scholar 

  2. Chahal P, Tummala RR, Allen MG, Swaminathan M (1998) A novel integrated decoupling capacitor for MCM-L technology. IEEE Trans Comp Pack Manuf Technol Part B: Adv Packag 21:184–193

    Article  CAS  Google Scholar 

  3. Brandrup J, Immergut EH (1974) Polymer handbook, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  4. Skotheim T, Elsenbaumer R, Reynolds J (1998) Handbook of conductive polymers. Marcel Dekker, New York

    Google Scholar 

  5. Nalwa HS (1997) Handbook of organic conductive molecules and polymers, vol 2. Wiley, New York

    Google Scholar 

  6. Tamai T (1982) Electrical properties of conductive elastomer as electrical contact material. Compon Hybrids Manufact Technol IEEE Trans 5:56–61

    Article  Google Scholar 

  7. Mather PJ, Thomas KM (1997) Carbon black/high density polyethylene conducting composite materials: part I structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite. J Mater Sci 32:401–407

    Article  CAS  Google Scholar 

  8. Achour ME, Miane JL, Lahjomri F, El Malhi M, Carmona F (1995) Microwave propagation through carbon black-epoxy resin composites. J Mater Sci Lett 14:1425–1429

    Article  CAS  Google Scholar 

  9. Makela T, Sten J, Hujanen A, Isotalo H (1999) High frequency polyaniline shields. Synth Met 101:707–717

    Article  CAS  Google Scholar 

  10. Norman RH (1970) Electrically conducting rubber composites. Elsevier, Oxford

    Google Scholar 

  11. Chung D (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354

    Article  CAS  Google Scholar 

  12. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  13. Rizvi R, Cochrane B, Biddiss E, Naguib H (2011) Piezoresistance characterization of poly (dimethyl-siloxane) and poly (ethylene) carbon nanotube composites. Smart Mater Struct 20:094003

    Article  Google Scholar 

  14. Bigg DM (1979) Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci 19:1188–1192

    Article  CAS  Google Scholar 

  15. Tanrattanakul V, Bunchuay A (2007) Microwave absorbing rubber composites containing carbon black and aluminum powder. J Appl Polym Sci 105:2036–2045

    Article  CAS  Google Scholar 

  16. Medalia AI (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59:432–454

    Article  CAS  Google Scholar 

  17. Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23:36–46

    Article  Google Scholar 

  18. Bueche F (1972) Electrical resistivity of conducting particles in an insulating matrix. J Appl Phy 43:4837–4838

    Article  CAS  Google Scholar 

  19. Bueche F (1973) A new class of switching materials. J Appl Phy 44:532–533

    Article  CAS  Google Scholar 

  20. De SK, White JR (2001) Rubber technologist’s handbook, vol 1. Smithers Rapra Publishing

    Google Scholar 

  21. Bhowmick AK, Stephens H (2000) Handbook of elastomers, 2nd edn. CRC Press, Technology and Engineering, Boca Raton

    Google Scholar 

  22. Shtarkova R, Dishovsky N (2009) Elastomer-based microwave absorbing materials. J Elastomers Plast 41:163–174

    Article  CAS  Google Scholar 

  23. Schneider WC, Carter WC, Magat M, Smyth CP (1945) Dielectric dispersion and absorption in neoprene gum and tread stocks. J Am Chem Soc 67:959–963

    Article  CAS  Google Scholar 

  24. Matsuo M, Ishida Y, Yamafuji K, Takayanagi M, Irie F (1965) Dielectric behavior of polychloroprene. Kolloid-Zeitschrift und Zeitschrift für Polymere 201:89–93

    Article  CAS  Google Scholar 

  25. Abo-Hashem A (1993) DC conduction in chloroprene rubber (CR). Polym Degrad Stab 40:379–384

    Article  CAS  Google Scholar 

  26. Baughman RH (1996) Conducting polymer artificial muscles. Synth Metals 78:339–353

    Article  CAS  Google Scholar 

  27. Suo Z (2010) Theory of dielectric elastomers. Acta Mech Solida Sin 23:549–578

    Article  Google Scholar 

  28. Pelrine R, Sommer-Larsen P, Kornbluh RD, Heydt R, Kofod G, Pei Q, Gravesen P (2001) Applications of dielectric elastomer actuators. In: SPIE’s 8th annual international symposium on smart structures and materials. International Society for Optics and Photonics, pp 335–349

    Google Scholar 

  29. Kornbluh R, Pelrine R, Eckerle J, Joseph J (1998) Electrostrictive polymer artificial muscle actuators. In: Robotics and automation. Proceedings of IEEE international conference, vol 3, pp 2147–2154

    Google Scholar 

  30. Heydt R, Kornbluh R, Pelrine R, Mason V (1998) Design and performance of an electrostrictive-polymer-film acoustic actuator. J Sound Vib 215:297–311

    Article  Google Scholar 

  31. Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2001) (eds.). Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier

    Google Scholar 

  32. Banno H (1983) Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics 50:3–12

    Article  Google Scholar 

  33. Lawandy SN, Abd-El-Nour KN (1986) Dielectric properties and stress–strain measurements of chloroprene rubber based on different carbon black fillers. J Appl Polym Sci 31:841–848

    Article  CAS  Google Scholar 

  34. Hanna FF, Abdel-Nour KN, Abdel-Messieh SL (1992) Dielectric properties of some synthetic rubber mixtures: Part I Neoprene-carbon black mixtures. Polym Degrad Stab 35:49–52

    Article  CAS  Google Scholar 

  35. Omar Al-Hartomy A, Ahmed Al-Ghamdi A, Falleh Alsolamy J, Dishovsky N, Mihaylov M, Iliev V, El-Tantawy F (2012) Effect of furnace carbon black on the dielectric and microwave properties of chloroprene rubber composites. Kautsch Gummi Kunstst 65:43–48

    Google Scholar 

  36. Al-Hartomy OA, Al-Ghamdi A, Dishovsky N, Shtarkova R, Iliev V, El-Tantawy F (2013) Comparison of microwave absorbing properties of chloroprene rubber composites containing carbon black and nickel/cobalt powder. J Elastomers Plast 45:471–485

    Article  CAS  Google Scholar 

  37. Abd-El-Messieh SL, Younan AF (1996) Dielectric relaxation and mechanical properties of natural and chloroprene rubber with some nitroaniline additives. J Appl Polym Sci 62:805–812

    Article  CAS  Google Scholar 

  38. Bengtsson P, Klason C, Kubat J, McQueen DH (1989) Electrical noise characteristics of carbon-black-filled chloroprene rubber. J Phys D Appl Phys 22:1736–1741

    Article  CAS  Google Scholar 

  39. Ali MH, Abo-Hashem A (1997) Percolation concept and the electrical conductivity of carbon black-polymer composites 2: non-crystallisable chloroprene rubber mixed with HAF carbon black. J Mater Process Technol 68:163–167

    Article  Google Scholar 

  40. Ali MH, Abo-Hashem A (1997) Percolation concept and the electrical conductivity of carbon black-polymer composites 3: crystallisable chloroprene rubber mixed with FEF carbon black. J Mater Process Technol 68:168–171

    Article  Google Scholar 

  41. Jana PB, Chaudhuri S, Pal AK, De SK (1992) Electrical conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction. Polym Eng Sci 32:448–456

    Article  CAS  Google Scholar 

  42. Jana PB, De SK, Chaudhuri S, Pal AK (1992) Electrical conductivity of barium-ferrite-vulcanized polychloroprene filled with short carbon fiber. Rubber Chem Technol 65:7–23

    Article  CAS  Google Scholar 

  43. Saritha Chandran A, Narayanankutty SK (2008) An elastomeric conducting composite based on polyaniline coated nylon fiber and chloroprene rubber. Eur Polym J 44:2418–2429

    Article  Google Scholar 

  44. Kim YA, Hayashi T, Endo M, Gotoh Y, Wada N, Seiyama J (2006) Fabrication of aligned carbon nanotube-filled rubber composite. Scripta Mater 54:31–35

    Article  CAS  Google Scholar 

  45. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112

    Article  Google Scholar 

  46. Das A, Stöckelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Klüppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 49:5276–5283

    Article  CAS  Google Scholar 

  47. Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47:2234–2243

    Article  CAS  Google Scholar 

  48. Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71:1441–1449

    Article  CAS  Google Scholar 

  49. Steinhauser D, Subramaniam K, Das A, Heinrich G, Klüppel M (2012) Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym Lett 6:927–936

    Article  CAS  Google Scholar 

  50. Semeriyanov FF, Chervanyov AI, Jurk R, Subramaniam K, König S, Roscher M, Das A, Stöckelhuber KW, Heinrich G (2013) Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression. J Appl Phy 113:103706

    Article  Google Scholar 

  51. Ito M, Okada S, Kuriyama I (1981) The deterioration of mechanical properties of chloroprene rubber in various conditions. J Mater Sci 16:10–16

    Article  CAS  Google Scholar 

  52. Pinho MS, Gregori ML, Nunes RCR, Soares BG (2001) Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polym Degrad Stab 73:1–5

    Article  CAS  Google Scholar 

  53. Kuwahara H, Sudo S, Iijima M, Ohya S (2010) Dielectric properties of thermally degraded chloroprene rubber. Polym Degrad Stab 95:2461–2466

    Article  CAS  Google Scholar 

  54. Subramaniam K, Das A, Heinrich G (2013) Improved oxidation resistance of conducting polychloroprene composites. Compos Sci Technol 74:14–19

    Article  CAS  Google Scholar 

  55. Ramasamy SR (1997) A review of EMI shielding and suppression materials. In: Electromagnetic interference and compatibility. Proceedings of the international conference on IEEE pp 459–466

    Google Scholar 

  56. Kimmel WD, Gerke DD (1995) Controlling EMI with cable shields. Med Device Diagn Ind 17:112–115

    Google Scholar 

  57. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  58. Jana PB, Mallick AK, De SK (1991) Electromagnetic interference shielding by carbon fiber-filled polychloroprene rubber composites. Composites 22:451–455

    Article  CAS  Google Scholar 

  59. Joo J, Epstein AJ, MacDiarmid AG (1995) Control of dielectric response of polyanilines: applications to EMI shielding. In: Technical papers of the annual technical conference-society of plastics engineers, pp 1672–1672

    Google Scholar 

  60. Jana PB, Mallick K, De SK (1992) Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range. IEEE Trans Electromagn Compat 34:478–481

    Article  Google Scholar 

  61. Jana PB, Mallick AK, De SK (1993) Electromagnetic interference shielding effectiveness of short carbon fiber-filled polychloroprene vulcanized by barium ferrite. J Mater Sci 28:2097–2104

    Article  CAS  Google Scholar 

  62. Jana PB, Mallick AK (1994) Studies on effectiveness of electromagnetic interference shielding in carbon fiber filled polychloroprene composites. J Elastomers Plast 26:58–73

    CAS  Google Scholar 

  63. Saritha Chandran A, Narayanankutty SK, Mohanan P (2011) Microwave characteristics of polyaniline based short fiber reinforced chloroprene rubber composites. Polym Plast Technol Eng 50:453–458

    Article  Google Scholar 

  64. Pinho MS, Gregori ML, Nunes RR, Soares BG (2002) Performance of radar absorbing materials by waveguide measurements for X-and Ku-band frequencies. Eur Polym J 38:2321–2327

    Article  CAS  Google Scholar 

  65. Lima RC, Pinho MS, Gregori ML, Nunes RR, Ogasawara T (2004) Effect of double substituted m-barium hexaferrites on microwave absorption properties. Mater Sci-Poland 22:245–252

    Google Scholar 

  66. Capitaneo JL, Caffarena VDR, Ogasawara T, Pinho MS (2008) Performance of radar absorbing nanocomposites by waveguide measurements. Mater Res 11:319–324

    Article  CAS  Google Scholar 

  67. Caffarena VDR, Capitaneo JL, Ogasawara T, Pinho MS (2008) Microwave absorption properties of Co, Cu, Zn: substituted hexaferrite polychloroprene nanocomposites. Mater Res 11:335–339

    Article  CAS  Google Scholar 

  68. Das S, Nayak GC, Sahu SK, Routray PC, Roy AK, Baskey H (2014) Microwave absorption properties of double-layer RADAR absorbing materials based on doped barium Hexaferrite/TiO2/conducting carbon black. J Eng 2014: 1–5. (Article ID 468313, http://dx.doi.org/10.1155/2014/468313)

    Google Scholar 

  69. Kunanuruksapong R, Sirivat A (2013) Highly electro responsive polymer blends of polyaniline nanoparticles and chloroprene rubbers. Adv Polym Technol 32:556–571

    Article  Google Scholar 

  70. Petrie E M (2000) Handbook of adhesives and sealants. McGraw-Hill Professional

    Google Scholar 

  71. Steinfink M (1990) Adhesive materials, Neoprene (polychloroprene)-based solvent and latex adhesives. In Skeist I (ed) Handbook of adhesives. Van Nostrand Reinhold, New York, pp 284–306

    Google Scholar 

  72. Pocius AV (2002) Adhesion and adhesives technology: an introduction, 2nd edn. Hanser Gardner Publications

    Google Scholar 

  73. Galiatsatos V (1999) Polychloroprene. In: Polymer data handbook. Oxford University Press, pp 375–379

    Google Scholar 

  74. Li Y, Wong CP (2006) Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications. Mat Sci Eng R 51:1–35

    Article  Google Scholar 

  75. Massoumi B, Farjadbeh F, Mohammadi R, Entezami AA (2013) Synthesis of conductive adhesives based on epoxy resin/nanopolyaniline and chloroprene rubber/nanopolyaniline: characterization of thermal, mechanical and electrical properties. J Compos Mater 47:1185–1195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the editors of this book for the invitation to contribute this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayan Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapgate, B.P., Das, C. (2016). Electronic Applications of Chloroprene Rubber and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_10

Download citation

Publish with us

Policies and ethics