Skip to main content

Sorption Values for Calcium, Nickel, and Carbon

  • Chapter
  • First Online:
Radionuclide and Metal Sorption on Cement and Concrete

Part of the book series: Topics in Safety, Risk, Reliability and Quality ((TSRQ,volume 9999))

  • 1083 Accesses

Abstract

These elements are grouped together because, despite their differences in chemistry, their radioactive isotopes are taken up in cementitious materials by isotopic exchange, a physical process, rather than by some chemical sorption process. 41Ca, 14C, and 59Ni plus 63Ni are relevant constituents of radioactive wastes. For any radioactive isotope of a given element, isotopic exchange becomes important when the pore solution in the hydrated cement is already saturated with respect to some solubility-limiting phase of this element. In the case of Ca and C, this does not appear as a surprise, since both elements occur at high concentration levels in different HCP minerals as well as in the pore solution. In case of Ni, the formation of layered double hydroxides leads to a very low aqueous solubility in cementitious systems. Therefore, the comparatively low content of stable Ni in hydrated cement paste (stemming mainly from clinker production) is sufficient to reach the solubility limit for Ni in cementitious pore solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rare isotope created when a high-energy cosmic ray interacts with the nucleus of an in situ atom.

  2. 2.

    Neglecting carbonate in cement is conservative in view of determining sorption values. Also, the related model is independent of cement composition and avoids the need to account for difficult to estimate atmospheric/aqueous carbonation processes.

  3. 3.

    An uncertainty factor (UF) is defined for x such that the range of possible x values is defined by the limits best estimate/UF ≤ x ≤ BE × UF.

  4. 4.

    Lower bound because R d value obtained without adding stable Ni (inventory of dissolved stable Ni for HTS (Haute Teneur en Silice) Portland cement was 6.5 × 10−8 M).

  5. 5.

    Ageing of concretes and pastes occurred in the absence of air to avoid carbonatization.

References

  • S. Aggarwal, M.J. Angus, J. Ketchen, Sorption of radionuclides onto specific mineral phases present in repository cements. NSS/R312, AEA-DandR-0395 (2000)

    Google Scholar 

  • B. Allard, B. Torstenfelt, K. Andersson, Sorption studies of H14CO3- on some geologic media and concrete. Mater. Res. Soc. Symp. Proc. 3, 465–472 (1981)

    Google Scholar 

  • Andra (2005), Référentiel de comportement des radionucléides et des toxiques chimiques d’un stockage dans le Callovo-Oxfordien jusqu’à l’homme, Site de Meuse/Haute-Marne, Tome 1/2: Chapitres 1 à 4, Dossier 2005 Argile (2005)

    Google Scholar 

  • G. Audi, A.H. Wapstra, C. Thibault, J. Blachot, O. Bersillon, Isotope masses from Ame 2003 atomic mass evaluation. Nucl. Phys. A729, 129 (2003)

    Google Scholar 

  • S. Bayliss, F.T. Ewart, R.M. Howse, J.L. Smith-Briggs, H.P. Thomason, H.A. Willmott, The solubility and sorption of lead-210 and carbon-14 in a nearfield environment. Mat. Res. Soc. Symp. Proc. 112, 33–42 (1988)

    Article  Google Scholar 

  • S. Bayliss, A. Haworth, R. McCrohon, A.D. Moreton, P. Oliver, N.J. Pilkington, A.J. Smith, J.L. Smith-Briggs, Radioelement behaviour in a cementitious environment. Mat. Res. Soc. Symp. Proc. 257, 641–648 (1992)

    Article  Google Scholar 

  • U. Berner, Project Opalinus Clay: Radionuclide concentration limits in the cementitious near-field of an ILW repository, PSI Bericht 02-26 (2002)

    Google Scholar 

  • C.M. Bethke, The geochemist’s workbench, release 6.0, GWB reference manual, hydrogeology program University of Illinois, May (2006)

    Google Scholar 

  • M.H. Bradbury, F. Sarott, Sorption databases for the cementitious near-field of a L/ILW repository for performance assessment, PSI Bericht—95-06, (1995)

    Google Scholar 

  • M.H. Bradbury, L.R. Van Loon, Cementitious near-field sorption data bases for performance assessment of a L/ILW disposal facility in a Palfris Marl Host Rock, CEM-94: update I, June 1997, PSI Bericht Nr. 98-01 (1998)

    Google Scholar 

  • M. Cowper, A. Green, B.J. Myatt, S.W. Swanton, S.J. Williams, A laboratory study of the impact of picolinate and anion exchange resin degradation products on nickel, americium and plutonium behaviour in a repository, SA/ENV-0693 (2005)

    Google Scholar 

  • J.E. Cross, A.D. Moreton, C.J. Tweed, Thermodynamic modelling of radioactive waste disposal: assessment of near-field solubility, NSS/R311 (1995)

    Google Scholar 

  • W.A. Deer, R.A. Howie, W.S. Wise, J. Zussman, in Rock-Forming Minerals. Volume 4B. Framework Silicates: Silica Minerals. Feldspathoids and the Zeolites, 2nd edn. ed. (Geological Society of London, London, 2004), p. 982

    Google Scholar 

  • N.D.M. Evans, Binding mechanisms of radionuclides to cement. Cem. Concr. Res. 38, 543–553 (2008)

    Article  Google Scholar 

  • D. Fink, J. Klein, R. Middleton, 41Ca: past present and future. Nucl. Instr. Meth. B 52, 572 (1990)

    Article  Google Scholar 

  • S.P.H.T. Freeman, J.C. King, N.E. Vieira, L.R. Woodhouse, A.L. Yergey, Human calcium metabolism including bone resorption measured with 41Ca tracer. Nucl. Instr. Meth. B 123, 266–270 (1997)

    Article  Google Scholar 

  • H. Gamsjager, J. Bugajski, T. Gajda, R.J. Lemire, W. Preis, Chemical Thermodynamics of Nickel (Elsevier, OECD NEA, Issy-les-Moulineaux, France, 2005)

    Google Scholar 

  • M. Hein, S. Arena, in Foundations of College Chemistry, 12th edn. (Wiley, 2006), 467 pages

    Google Scholar 

  • W. Henning, W.A. Bell, P.J. Billquist, B.G. Glagola, W. Kutschera, Z. Liu, H.F. Lucas, M. Paul, K.E. Rehm, J.L. Yntema, Calcium-41 concentration in terrestrial materials: prospects for dating of pleistocene samples. Science 236, 725 (1987)

    Article  Google Scholar 

  • R. Hietanen, E.-L. Kamarainen, M. Alaluusua, Sorption of strontium, caesium, nickel, iodine and carbon in concrete, Report YJT-84-04 (1984)

    Google Scholar 

  • R. Hietanen, M. Alaluusua and T. Jaakkola, Sorption of caesium, strontium, iodine, nickel and carbon in mixtures of concrete, crushed rock and bitumen. Report YJT-85-38. Department of radiochemistry, University of Helsinki, September 1985

    Google Scholar 

  • S. Holgersson, Y. Albinsson, B. Allard, H. Boren, I. Pavasars, I. Engkvist, Effects of Gluco-isosaccharinate on Cs, Ni, Pm, and Th sorption onto, and diffusion into cement. Radiochim. Acta 82, 393–398 (1998)

    Google Scholar 

  • W. Hummel, E. Curti, Nickel aqueous speciation and solubility at ambient conditions: a thermodynamic elegy. Monatsh. fur Chemie 134, 941–973 (2003)

    Article  Google Scholar 

  • C.S. Hurlbut, C. Klein, Manual of Mineralogy, 20th edn. (Wiley, New York, 1985)

    Google Scholar 

  • M. Itoh, K. Watanabe, M. Hatakeyama, M. Tachibana, Determination of 41Ca in biological-shield concrete by low-energy X-ray spectrometry. Anal. Bioanal. Chem. 372, 532–536 (2002)

    Article  Google Scholar 

  • D. Jacques, D. Mallants, Evolution of concrete pore water and solid phase composition during leaching with different types of water, project near surface disposal of category a waste at Dessel, NIROND-TR 2008-24 E V2 (2011)

    Google Scholar 

  • D. Jacques, L. Wang, E. Martens, D. Mallants, Time dependency of the geochemical boundary conditions for the cementitious engineered barriers of the Belgian surface disposal facility, Project near surface disposal of category a waste at Dessel, NIRAS-MP5 DATA-LT(NF) Version 1, NIROND-TR 2008-24 E (2008)

    Google Scholar 

  • A. Jakob, F. Sarott, P. Spieler, Diffusion and sorption on hardened cement pastes—experimental and modelling results. Nagra technical report 99-06, August (1999)

    Google Scholar 

  • S. Kaneko, H. Tanabe, M. Sasoh, R. Takahashi, T. Shibano, S. Tateyma, A study on the chemical forms and migration behaviour of carbon-14 leached from the simulated hull waste in the underground conditions. Mat. Res. Soc. Symp. Proc. 757, II.3.8.1–II.3.8.7 (2003)

    Google Scholar 

  • S. Kulmala, M. Hakanen, The solubility of Zr, Nb and Ni in groundwater and concrete water, and sorption on crushed rock and cement. YJT Report N° YJT-93-21 (1993)

    Google Scholar 

  • L.Z. Lakshtanov, S.L.S. Stipp, Experimental study of nickel (II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697 (2007)

    Article  Google Scholar 

  • B. Lothenbach, F. Winnefeld, Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res. 36, 209–226 (2006)

    Article  Google Scholar 

  • P. Mandaliev, E. Wieland, R. Dähn, J. Tits, S.V. Churakov, O. Zaharko, Mechanisms of Nd(III) uptake by 11 Ã… tobermorite and xonotlite. Appl. Geochem. 25, 763–777 (2010)

    Article  Google Scholar 

  • S.V. Mattigod, D. Rai, A.R. Felmy, L. Rao, Solubility and solubility product of crystalline Ni(OH)2. J. Solution Chem. 26, 391–403 (1997)

    Article  Google Scholar 

  • I. McKinley, A. Scholtis, A comparison of radionuclide sorption databases used in recent performance assessments, in Radionuclide Sorption from the Safety Evaluation Perspective, Proceedings of an NEA Workshop, 16–18 Oct, Interlaken, Switzerland 1991

    Google Scholar 

  • P. Muller, K. Blaum, B.A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, K. Wendt, Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry. Radiochim. Acta 88, 487–493 (2000)

    Article  Google Scholar 

  • K. Noshita, T. Nishi, T. Yoshida, H. Fujihara, N. Saito, S. Tanaka, Categorization of cement hydrates by radionuclide sorption mechanism. Mat. Res. Soc. Symp. Proc. 663, 115–121 (2001)

    Article  Google Scholar 

  • Nuclear Energy Agency (NEA-OECD), in Proceedings of the Sorption Workshop: Conclusion of NEA Sorption Project Phase II and Status Analysis of Sorption Modelling for PA, NEA/RWM/SORPTION(2005)3, OECD-NEA, Paris, France 2005

    Google Scholar 

  • Nuclear Energy Agency (NEA-OECD), The jeff-3.1 nuclear data library, jeff report 21, oecd/nea, Paris, France 2006

    Google Scholar 

  • M. Ochs, D. Hager, S. Helfer, B. Lothenbach, Solubility of radionuclides in fresh and leached cementitious systems at 22 °C and 50 °C. Mat. Res. Soc. Symp. Proc. 506, 773–780 (1998)

    Article  Google Scholar 

  • M. Ochs, L. Vieille-Petit, L. Wang, D. Mallants, B. Leterme, Additional sorption parameters for the cementitious barriers of a near-surface repository, NIROND-TR 2010-06 E, March 2011

    Google Scholar 

  • ondraf/niras, Identification of critical radionuclides through a screening of the ondraf/niras 2003/2004 radiological inventory for category a waste, Nirond-tr 2007-05 e, April 2011

    Google Scholar 

  • N.J. Pilkington, N.S. Stone, The solubility and sorption of nickel and niobium under high pH conditions, NSS/R 186 (1990)

    Google Scholar 

  • I. Pointeau, N. Coreau, P. Reiller, Etude expérimentale et modélisation de la rétention de 14CO3 par les matériaux constituant le béton dans le cadre d’un entreposage de barres graphite UNGG. Note Technique CEA. NT DPC/SCPA 02-046 2002

    Google Scholar 

  • M. Sasoh, The study for the chemical forms of C-14 released from activated metals, in Proceedings of a Workshop on the Release and Transport of C-14 in a Repository Environment. NAGRA Nagra Internal Report, Nagra, Wettingen, Switzerland, pp. 85–87 2004

    Google Scholar 

  • A.M. Scheidegger, E. Wieland, A.C. Scheinost, R. Dahn, P. Spieler, Spectroscopic evidence for the formation of layered Ni–Al double hydroxides in cement. Environ. Sci. Technol. 34, 4545–4548 (2000)

    Article  Google Scholar 

  • J. Small, Modelling the partitioning and transport of C-14 in a microbially active LLW site, in Proceedings of a Workshop on the Release and Transport of C-14 in a Repository Environment. NAGRA Nagra Internal Report, Nagra, Wettingen, Switzerland, pp. 109–120 2004

    Google Scholar 

  • U.S. Department of Energy (USDOE), National low-level waste management program radionuclide report series, Selected radionuclides important to LLW management, DOE\LLW-238, November 1996a

    Google Scholar 

  • U.S. Department of Energy (USDOE), Selected radionuclides important to low-level radioactive waste management, National low-level waste management program, DOE/LLW-138, November 1996b

    Google Scholar 

  • M. Vespa, R. Dähn, D. Grolimund, M. Harfouche, E. Wieland, A.M. Scheidegger, Speciation of heavy metals in cement-stabilized waste forms: a micro-spectroscopic study. J. Geochem. Explor. 88, 77–80 (2006a)

    Article  Google Scholar 

  • M. Vespa, R. Dahn, D. Grolimund, E. Wieland, A.M. Scheidegger, Spectroscopic investigation of Ni speciation in hardened cement. Environ. Sci. Technol. 40, 2275–2282 (2006b)

    Article  Google Scholar 

  • L Wang, E. Martens, D. Jacques, P. De Canniere, J. Berry, D. Mallants, Review of sorption values for the cementitious near field of a near surface radioactive waste disposal facility, NIROND-TR 2008-23E, April 2009

    Google Scholar 

  • E. Wieland, J. Tits, P. Spieler, J.P. Dobler, A.M. Scheidegger, Uptake of nickel and strontium by a sulphate-resisting Portland cement. Appl. Mineral. 2, 705–708 (2000)

    Google Scholar 

  • E. Wieland, L. Van Loon, Cementitious near-field sorption data base for performance assessment of an ILW repository in Opalinus Clay, PSI Bericht Nr. 03-06 (2002)

    Google Scholar 

  • E. Wieland, J. Tits, A. Ulrich, M.H. Bradbury, Experimental evidence for solubility limitation of the aqueous Ni(II) concentration and isotopic exchange of 63Ni in cementitious systems. Radiochim. Acta 94, 29–36 (2006)

    Article  Google Scholar 

  • M.E. Wieser, Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl. Chem. 78(11), 2051–2066 (2006)

    Article  Google Scholar 

  • M.-S. Yim, F. Caron, Life cycle and management of carbon-14 from nuclear power generation. Prog. Nucl. Energy 48, 2–36 (2006)

    Article  Google Scholar 

  • J.M. Zachara, C.E. Cowan, C.T. Resch, Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 55, 1549–1562 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ochs .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ochs, M., Mallants, D., Wang, L. (2016). Sorption Values for Calcium, Nickel, and Carbon. In: Radionuclide and Metal Sorption on Cement and Concrete. Topics in Safety, Risk, Reliability and Quality, vol 9999. Springer, Cham. https://doi.org/10.1007/978-3-319-23651-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23651-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23650-6

  • Online ISBN: 978-3-319-23651-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics