Tools for Assessing Fracture Risk and for Treatment Monitoring

  • William D. Leslie
  • Lisa M. Lix
  • Suzanne N. Morin

Abstract

The suboptimal performance of bone mineral density (BMD) as the sole predictor of fracture risk and treatment decision-making has led to the development of risk prediction algorithms that estimate fracture probability using multiple risk factors for fracture, including basic demographic and physical characteristics, personal and family history, other health conditions, and medication use. This chapter reviews selected risk assessment tools, based upon absolute fracture probability and their potential for treatment decision-making and monitoring. Validated prognostic models for fracture risk assessment can guide clinicians and individuals in understanding the risk of having an osteoporosis-related fracture and inform their decision-making to mitigate these risks. Fracture probability algorithms that have been independently evaluated in at least one other cohort include the World Health Organization FRAX®, the Garvan Fracture Risk Calculator, and the QResearch Database’s QFracture®. The role for risk prediction tools is expanding beyond the initial decision regarding treatment initiation, but data are limited. For example, FRAX appears to be useful in assessing individuals on treatment. However, fracture probability is not particularly responsive to osteoporosis treatments and cannot be recommended as a target for goal-directed therapy. More treatment-responsive measures need to be identified to better inform the osteoporosis management paradigm.

Keywords

Osteoporosis Fractures Prediction tools Bone densitometry Treatment Bisphosphonates Monitoring 

Notes

Sources of Support

LML is supported by a Manitoba Research Chair. SNM is Chercheur-clinicien Boursier des Fonds de la Recherche en Sante du Quebec.

Disclosures

WDL (all fees paid to facility). Speaker bureau: Amgen, Eli Lilly, and Novartis. Research grants: Amgen and Genzyme. SNM: Consultant to Amgen, Novartis, Eli Lilly, and Merck. Speaker bureau: Amgen and Novartis. Research grant: Amgen.

References1

  1. 1.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Kanis JA, Melton III LJ, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8(5):468–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton III LJ, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Schuit SC, Van der KM, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.PubMedCrossRefGoogle Scholar
  9. 9.
    Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177(6):575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York: Springer; 2008.Google Scholar
  11. 11.
    Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:1432–5.CrossRefGoogle Scholar
  12. 12.
    Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:1373–7.CrossRefGoogle Scholar
  13. 13.
    Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Leslie WD, Lix LM. Comparison between various fracture risk assessment tools. Osteoporos Int. 2014;25(1):1–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Ikeda M, Ishigaki T, Yamauchi K. Relationship between Brier score and area under the binormal ROC curve. Comput Methods Programs Biomed. 2002;67(3):187–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanis JA, Oden A, Johansson H, McCloskey E. Pitfalls in the external validation of FRAX. Osteoporos Int. 2012;23(2):423–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med. 2014;160(2):122–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Pressman AR, Lo JC, Chandra M, Ettinger B. Methods for assessing fracture risk prediction models: experience with FRAX in a large integrated health care delivery system. J Clin Densitom. 2011;14(4):407–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Leslie WD, Lix LM. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system. J Bone Miner Res. 2011;26(3):460–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Gourlay ML, Powers JM, Lui LY, Ensrud KE. Clinical performance of osteoporosis risk assessment tools in women aged 67 years and older. Osteoporos Int. 2008;19(8):1175–83.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rud B, Hilden J, Hyldstrup L, Hrobjartsson A. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy. Osteoporos Int. 2009;20(4):599–607.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz EN, Steinberg DM. Prescreening tools to determine who needs DXA. Curr Osteoporos Rep. 2006;4(4):148–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. Accessible at: http://www.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf. Sheffield: University of Sheffield; 2007.
  27. 27.
    Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD. FRAX((R)) with and without bone mineral density. Calcif Tissue Int. 2012;90(1):1–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Leslie WD, Morin S, Lix LM, Johansson H, Oden A, McCloskey E, et al. Fracture risk assessment without bone density measurement in routine clinical practice. Osteoporos Int. 2012;23(1):75–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD. A note on competing risks in survival data analysis. Br J Cancer. 2004;91(7):1229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Leslie WD, Lix LM, Wu X. Competing mortality and fracture risk assessment. Osteoporos Int. 2013;24(2):681–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int. 2000;11(8):669–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12(5):417–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Lam A, Leslie WD, Lix LM, Yogendran M, Morin SN, Majumdar SR. Major osteoporotic to hip fracture ratios in Canadian men and women with Swedish comparisons: a population based analysis. J Bone Miner Res. 2013;29(5):1067–73.CrossRefGoogle Scholar
  35. 35.
    **Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–46. **This seminal report from the WHO Collaborating Centre for Metabolic Bone Diseases evaluated the performance characteristics of clinical risk factors with and without BMD in eleven independent population-based cohorts. The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.PubMedCrossRefGoogle Scholar
  36. 36.
    Fitzgerald G, Compston JE, Chapurlat RD, Pfeilschifter J, Cooper C, Hosmer Jr DW, et al. Empirically based composite fracture prediction model from the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW). J Clin Endocrinol Metab. 2014;99(3):817–26.PubMedGoogle Scholar
  37. 37.
    Sornay-Rendu E, Munoz F, Delmas PD, Chapurlat RD. The FRAX tool in French women: how well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res. 2010;25(10):2101–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Tremollieres FA, Pouilles JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res. 2010;25(5):1002–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, et al. Construction of a FRAX((R)) model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int. 2011;22(3):817–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res. 2010;25(11):2350–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, et al. Fracture prediction and calibration of a Canadian FRAX(R) tool: a population-based report from CaMos. Osteoporos Int. 2011;22(3):829–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Czerwinski E, Kanis JA, Osieleniec J, Kumorek A, Milert A, Johansson H, et al. Evaluation of FRAX to characterise fracture risk in Poland. Osteoporos Int. 2011;22(9):2507–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Tamaki J, Iki M, Kadowaki E, Sato Y, Kajita E, Kagamimori S, et al. Fracture risk prediction using FRAX(R): a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2011;22(12):3037–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Rubin KH, Abrahamsen B, Hermann AP, Bech M, Gram J, Brixen K. Fracture risk assessed by Fracture Risk Assessment Tool (FRAX) compared with fracture risk derived from population fracture rates. Scand J Public Health. 2011;39(3):312–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Premaor M, Parker RA, Cummings S, Ensrud K, Cauley JA, Lui LY, et al. Predictive value of FRAX for fracture in obese older women. J Bone Miner Res. 2013;28(1):188–95.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ettinger B, Ensrud KE, Blackwell T, Curtis JR, Lapidus JA, Orwoll ES. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2013;24(4):1185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Byberg L, Gedeborg R, Cars T, Sundstrom J, Berglund L, Kilander L, et al. Prediction of fracture risk in men: a cohort study. J Bone Miner Res. 2012;27(4):797–807.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gonzalez-Macias J, Marin F, Vila J, Diez-Perez A. Probability of fractures predicted by FRAX(R) and observed incidence in the Spanish ECOSAP Study cohort. Bone. 2012;50(1):373–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Tebe Cordomi C, Del Rio LM, Di GS, Casas L, Estrada MD, Kotzeva A, et al. Validation of the FRAX predictive model for major osteoporotic fracture in a historical cohort of Spanish women. J Clin Densitom. 2013;16(2):231–7.PubMedCrossRefGoogle Scholar
  50. 50.
    **Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–411. **The joint Official Positions of the ISCD and IOF are the most updated and accepted guidelines for quantitatively or qualitatively adjusting FRAX clinical risk factors and subsequent fracture probabilities for the individual patient.PubMedCrossRefGoogle Scholar
  51. 51.
    Hans DB, Kanis JA, Baim S, Bilezikian JP, Binkley N, Cauley JA, et al. Joint Official Positions of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX((R)) Executive Summary of the 2010 Position Development Conference on Interpretation and Use of FRAX((R)) in Clinical Practice. J Clin Densitom. 2011;14(3):171–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011;22(3):839–47.PubMedCrossRefGoogle Scholar
  53. 53.
    Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809–16.PubMedCrossRefGoogle Scholar
  54. 54.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV, Nguyen ND, et al. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007;18(8):1109–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV, Nguyen ND, et al. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19(10):1431–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Langsetmo L, Nguyen TV, Nguyen ND, Kovacs CS, Prior JC, Center JR, et al. Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ. 2011;183(2):E107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ. 2009;339:b4229.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ. 2012;344:e3427.PubMedCrossRefGoogle Scholar
  59. 59.
    Collins GS, Mallett S, Altman DG. Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFractureScores. BMJ. 2011;342:d3651.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cummins NM, Poku EK, Towler MR, O’Driscoll OM, Ralston SH. Clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011;89(2):172–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B, Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013;28(8):1701–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dawson-Hughes B. A revised clinician’s guide to the prevention and treatment of osteoporosis. J Clin Endocrinol Metab. 2008;93(7):2463–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Dawson-Hughes B, Tosteson AN, Melton III LJ, Baim S, Favus MJ, Khosla S, et al. Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int. 2008;19(4):449–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A. Case finding for the management of osteoporosis with FRAX((R))-assessment and intervention thresholds for the UK. Osteoporos Int. 2008;19(10):1395–408.PubMedCrossRefGoogle Scholar
  67. 67.
    Lippuner K, Johansson H, Kanis JA, Rizzoli R. FRAX assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int. 2010;21(3):381–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M. Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res. 2003;18(8):1547–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Neuprez A, Johansson H, Kanis JA, McCloskey EV, Oden A, Bruyere O, et al. A FRAX model for the assessment of fracture probability in Belgium. Rev Med Liege. 2009;64(12):612–9.PubMedGoogle Scholar
  71. 71.
    Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182(17):1864–73.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Leslie WD, Schousboe JT. A review of osteoporosis diagnosis and treatment options in new and recently updated guidelines on case finding around the world. Curr Osteoporos Rep. 2011;9(3):129–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Tosteson AN, Melton III LJ, Dawson-Hughes B, Baim S, Favus MJ, Khosla S, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008;19(4):437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cheung E, Kung AW, Tan KC. Outcomes of applying the NOF, NOGG and Taiwanese guidelines to a cohort of Chinese early postmenopausal women. Clin Endocrinol (Oxf). 2014;80(2):200–7.CrossRefGoogle Scholar
  75. 75.
    Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2009;62(2):105–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    NICE National Institute for Health and Clinical Excellence. Osteoporosis: assessing the risk of fragility fracture. http://www.nice.org.uk/guidance/cg146/resources/guidance-osteoporosis-assessing-the-risk-of-fragility-fracture-pdf. Accessed on March 4, 2015.
  78. 78.
    McCloskey EV, Beneton M, Charlesworth D, Kayan K, de Takats D, Dey A, et al. Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res. 2007;22(1):135–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Kanis JA, Barton IP, Johnell O. Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int. 2005;16(5):475–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.PubMedCrossRefGoogle Scholar
  81. 81.
    Ryder KM, Cummings SR, Palermo L, Satterfield S, Bauer DC, Feldstein AC, et al. Does a history of non-vertebral fracture identify women without osteoporosis for treatment? J Gen Intern Med. 2008;23(8):1177–81.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Sun X, Ioannidis JP, Agoritsas T, Alba AC, Guyatt G. How to use a subgroup analysis: users’ guide to the medical literature. JAMA. 2014;311(4):405–11.PubMedCrossRefGoogle Scholar
  84. 84.
    McClung MR, Boonen S, Torring O, Roux C, Rizzoli R, Bone HG, et al. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res. 2012;27(1):211–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Eastell R, Black DM, Boonen S, Adami S, Felsenberg D, Lippuner K, et al. Effect of once-yearly zoledronic acid five milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab. 2009;94(9):3215–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the efficacy of raloxifene on all clinical and vertebral fractures and its dependency on FRAX. Bone. 2010;47(4):729–35.PubMedCrossRefGoogle Scholar
  87. 87.
    Boonen S, McClung MR, Eastell R, El-Hajj FG, Barton IP, Delmas P. Safety and efficacy of risedronate in reducing fracture risk in osteoporotic women aged 80 and older: implications for the use of antiresorptive agents in the old and oldest old. J Am Geriatr Soc. 2004;52(11):1832–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Ensrud KE, Black DM, Palermo L, Bauer DC, Barrett-Connor E, Quandt SA, et al. Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial. Arch Intern Med. 1997;157(22):2617–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res. 2006;21(4):536–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Watts NB, Josse RG, Hamdy RC, Hughes RA, Manhart MD, Barton I, et al. Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2003;88(2):542–9.PubMedCrossRefGoogle Scholar
  91. 91.
    McCloskey EV, Johansson H, Oden A, Vasireddy S, Kayan K, Pande K, et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy–additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int. 2009;20(5):811–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Kanis JA, Johansson H, Oden A, McCloskey EV. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44(6):1049–54.PubMedCrossRefGoogle Scholar
  93. 93.
    *McCloskey EV, Johansson H, Oden A, Austin M, Siris E, Wang A, et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012;27(7):1480–6. *Compelling evidence of a treatment-risk reduction interaction. Denosumab reduced fracture risk to a greater extent in those at moderate to high risk. For example, at 10% probability, denosumab decreased fracture risk by 11% (p = 0.629), whereas at 30% probability (90th percentile of study population) the reduction was 50% (p = 0.001).PubMedCrossRefGoogle Scholar
  94. 94.
    Donaldson MG, Palermo L, Ensrud KE, Hochberg MC, Schousboe JT, Cummings SR. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the Fracture Intervention Trial. J Bone Miner Res. 2012;27(8):1804–10.PubMedCrossRefGoogle Scholar
  95. 95.
    Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX((R)). Osteoporos Int. 2011;22(8):2347–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Hochberg MC, Ross PD, Black D, Cummings SR, Genant HK, Nevitt MC, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Intervention Trial Research Group. Arthritis Rheum. 1999;42(6):1246–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab. 2002;87(4):1586–92.PubMedCrossRefGoogle Scholar
  99. 99.
    Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC, Black DM, et al. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(8):1627–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem. 2009;42(10-11):929–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Szulc P. The role of bone turnover markers in monitoring treatment in postmenopausal osteoporosis. Clin Biochem. 2012;45(12):907–19.PubMedCrossRefGoogle Scholar
  102. 102.
    Silverman S. Adherence to medications for the treatment of osteoporosis. Rheum Dis Clin North Am. 2006;32(4):721–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res. 2012;27(6):1243–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Leslie WD, Morin SN, Lix LM. Fracture prediction from repeat BMD measurements in routine clinical practice for: the Manitoba BMD Cohort. J Bone Miner Res. 2011;26 Suppl 1:S78.Google Scholar
  105. 105.
    The 2012 hormone therapy position statement of: The North American Menopause Society. Menopause 2012;19(3):257–71.Google Scholar
  106. 106.
    MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008;148(3):197–213.PubMedCrossRefGoogle Scholar
  107. 107.
    **Cummings SR, Cosman F, Eastell R, Reid IR, Mehta M, Lewiecki EM. Goal-directed treatment of osteoporosis. J Bone Miner Res. 2013;28(3):433–8. **This paper proposes a bold new way of looking at the initiation and monitoring of osteoporosis treatment. The idea is to follow the example of other conditions, such as hypertension, where treatment is based on achieving a goal. Although there are many obstacles in setting treatment goals, the result could be more rational and effective use of the expanding array of treatments for osteoporosis.PubMedCrossRefGoogle Scholar
  108. 108.
    Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, Cummings SR, et al. Treatment failure in osteoporosis. Osteoporos Int. 2012;23(12):2769–74.PubMedCrossRefGoogle Scholar
  109. 109.
    Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone. 2007;41(3):308–17.PubMedCrossRefGoogle Scholar
  111. 111.
    Khosla S. Surrogates for fracture endpoints in clinical trials. J Bone Miner Res. 2003;18(6):1146–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Bucher HC, Guyatt GH, Cook DJ, Holbrook A, McAlister FA. Users’ guides to the medical literature: XIX. Applying clinical trial results. A. How to use an article measuring the effect of an intervention on surrogate end points. Evidence-Based Medicine Working Group. JAMA. 1999;282(8):771–8.PubMedCrossRefGoogle Scholar
  114. 114.
    McAlister FA, van DS, Padawal RS, Johnson JA, Majumdar SR. How evidence-based are the recommendations in evidence-based guidelines? PLoS Med. 2007;4(8):e250.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    McCloskey E, Leslie WD. Goal-directed therapy in osteoporosis. J Bone Miner Res. 2013;28(3):439–41.PubMedCrossRefGoogle Scholar
  116. 116.
    **Leslie WD, Majumdar SR, Lix LM, Morin SN, Johansson H, Oden A, et al. Can change in FRAX score be used to “treat-to-target”? A population-based cohort study. J Bone Miner Res. 2014;29(5):1074–80. **This study in 11,049 previously untreated women age >50 years undergoing baseline and follow-up DXA examinations and FRAX probability calculations provided a clear answer to the question - “No”. FRAX scores increased over time and this increase was attenuated but not prevented by treatment. Few women had meaningful reductions in FRAX scores. FRAX with BMD is not responsive enough to be used as a target for goal-directed treatment.PubMedCrossRefGoogle Scholar
  117. 117.
    McNabb BL, Vittinghoff E, Schwartz AV, Eastell R, Bauer DC, Ensrud K, et al. BMD changes and predictors of increased bone loss in postmenopausal women after a 5-year course of alendronate. J Bone Miner Res. 2013;28(6):1319–27.PubMedCrossRefGoogle Scholar
  118. 118.
    Office of the Surgeon General (US). Bone health and osteoporosis: a report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US). Available from: http://www.ncbinlmnihgov/books/NBK45513/2004
  119. 119.
    Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26(2):420–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP, et al. Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk. J Bone Miner Res. 2009;24(3):495–502.PubMedCrossRefGoogle Scholar
  121. 121.
    Donaldson M, Palermo L, Schousboe JT, Ensrud K, Hochberg MC, Cummings SR. FRAX and risk of vertebral fractures: The Fracture Intervention Trial (FIT). J Bone Miner.Res. in press. 2009.Google Scholar
  122. 122.
    Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, et al. A comparison of prediction models for fractures in older women: is more better? Arch Intern Med. 2009;169(22):2087–94.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • William D. Leslie
    • 1
    • 2
  • Lisa M. Lix
    • 3
  • Suzanne N. Morin
    • 4
  1. 1.Department of MedicineSt. Boniface General HospitalWinnipegCanada
  2. 2.Departments of Medicine and RadiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  4. 4.Department of MedicineMcGill University Health CenterMontrealCanada

Personalised recommendations