Skip to main content

Application of Aviation Turbulence Information to Air-Traffic Management (ATM)

  • Chapter
  • First Online:
Aviation Turbulence

Abstract

Unexpected turbulence, especially in the upper troposphere and lower stratosphere where cabin crews and passengers in cruising aircraft are likely to be unbuckled, causes in-flight injuries, structural damage, and flight delays. Therefore, turbulence information can be used to improve safety while pursuing efficiency in the air-traffic management (ATM). In this chapter, an optimal flight path that minimizes both total flight time (e.g., fuel consumption) and potential encounters of turbulence from departure to arrival airports is derived by combining simple modeling of aircraft flight trajectories with wind and turbulence predictions. In addition, probabilistic ensemble turbulence forecasts, evaluated against in situ eddy dissipation rate turbulence observations from commercial aircraft, are applied to suggest an optimal strategic and tactical ATM route planning for given weather and turbulence conditions in the USA. The variations of long-haul transoceanic flight routes and their turbulence potentials are also investigated using global reanalysis data to understand how the upper-level large-scale flow patterns can affect the long-term ATM planning through the changes of winds and turbulence conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnston, A.G., Livezey, R.E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083–1126 (1987)

    Article  Google Scholar 

  • Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Taylor and Francis, Levittown, PA (1975)

    Google Scholar 

  • Cornman, L.B., Morse, C.S., Cunning, G.: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircraft 32, 171–177 (1995)

    Article  Google Scholar 

  • DeLaura, R., Evans, J.: An exploratory study of modeling en route pilot convective storm flight deviation behavior. Preprints, 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, GA. Am. Meteorol. Soc. (2006)

    Google Scholar 

  • Ellrod, G.P., Knapp, D.I.: An objective clear-air turbulence forecasting technique: verification and operational use. Weather Forecast 7, 150–165 (1992)

    Article  Google Scholar 

  • Gill, P.G.: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteorol. Appl. 21, 3–11 (2014). doi:10.1002/met.1288

    Article  Google Scholar 

  • Gill, P.G., Stirling, A.J.: Including convection in global turbulence forecasts. Meteorol. Appl. 20, 107–114 (2013). doi:10.1002/met.1315

    Article  Google Scholar 

  • Hok, H.K., Sridhar, B, Grabbe, S. Chen, N.: Cross-polar aircraft trajectory optimization and the potential climate impact. 30th Digital Avionics Systems Conf. (DASC), Seattle, WA, Institute of Electrical and Electronics Engineers, p 15. [Available online at http://www.aviationsystemsdivision.arc.nasa.gov/ publications/2011/DASC2011_Ng.pdf.] (2011)

    Google Scholar 

  • Irvine, E.A., Hoskins, B.J., Shine, K.P., Lunnon, R.W., Froemming, C.: Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. 20, 80–93 (2013). doi:10.1002/met.1291

    Article  Google Scholar 

  • Jaeger, E.B., Sprenger, M.: A northern-hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 re-analysis data. J. Geophys. Res. 112, D20106 (2007). doi:10.1029/2006JD008189

    Article  Google Scholar 

  • Jardin, M., Bryson, A.: Methods for computing minimum-time paths in strong winds. J. Aircraft 35(1), 165–171 (2012)

    Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteorol. Climatol. 49(12), 2381–2403 (2010)

    Article  Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteorol. Climatol. 50(2), 311–324 (2011)

    Article  Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteorol. Climatol. 51, 1180–1200 (2012)

    Article  Google Scholar 

  • Kim, J.-H., Chun, H.-Y., Sharman, R.D., Keller, T.L.: Evaluations of upper-level turbulence diagnostics performance using the graphical turbulence guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteorol. Climatol. 50, 1936–1951 (2011)

    Article  Google Scholar 

  • Kim, J.H., Chun, H.-Y., Sharman, R.D., Trier, S.B.: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Mon. Weather Rev. 142(8), (2014). doi:10.1175/MWR-D-14-00008.1

    Google Scholar 

  • Kim, J.-H., Chan, W.N., Banavar, S., Sharman, R.D.: Combined winds and turbulence prediction system for automated Air-Traffic Management applications. J. Appl. Meteorol. Climatol. 54, 766–784 (2015)

    Article  Google Scholar 

  • Kim, J.-H., Chan, W.N., Banavar, S., Sharman, R.D., Williams, P.D., Strahan, M.: Impact of the north atlantic oscillation on transatlantic flight routes and clear-air turbulence. J. Appl. Meteorol. Climatol. 55, 763–771 (2016)

    Article  Google Scholar 

  • Knox, J.A., McCann, D.W., Williams, P.D.: Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci. 65, 3292–3304 (2008)

    Article  Google Scholar 

  • Krozel, J., Klimenko, V., Sharman, R.D.: Analysis of clear-air turbulence avoidance maneuvers. Air Traffic Control Quart. 4(2), 147–168 (2011)

    Google Scholar 

  • Lane, T.P., Sharman, R.D.: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteorol. Climatol. 47, 2777–2796 (2008)

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D.: Intensity of thunderstorm-generated turbulence revealed by large-eddy simulation. Geophys. Res. Lett. 41, 2221–2227 (2014). doi:10.1002/2014GL059299

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D., Clark, T.L., Hsu, H.-M.: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci. 60(10), 1297–1321 (2003)

    Article  Google Scholar 

  • Lane, T.P., Doyle, J.D., Plougonven, R., Shapiro, M.A., Sharman, R.D.: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci. 61(22), 2692–2706 (2004)

    Article  Google Scholar 

  • Lane, T.P., Doyle, J.D., Sharman, R.D., Shapiro, M.A., Watson, C.D.: Statistics and dynamics of aircraft encounters of turbulence over Greenland. Mon. Weather Rev. 137, 2687–2702 (2009)

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D., Trier, S.B., Fovell, R.G., Williams, J.K.: Recent advances in the understanding of near-cloud turbulence. Bull. Am. Meteorol. Soc. 93, 499–515 (2012). doi:10.1175/BAMS-D-11-00062.1

    Article  Google Scholar 

  • Lester, P.F.: Turbulence: A New Perspective for Pilots. Jeppesen Sanderson, Englewood, CO (1994)

    Google Scholar 

  • McNally, D., Sheth, K., Gong, C., Love, J., Lee, C.H., Sahlman, S., Cheng, J.: Dynamic weather routes: a weather avoidance system for near-term trajectory-based operations. 28th International Congress of the Aeronautical Sciences (ICAS), Brisbane, Australia (2012)

    Google Scholar 

  • Ng, H.K., Grabbe, S., Mukherjee, A.: Design and evaluation of a dynamic programming flight routing algorithm using the Convective Weather Avoidance Model. AIAA-2009-5862, AIAA Guidance, Navigation, and Control Conference, Chicago, IL (2009)

    Google Scholar 

  • Ng, H.K., Sridhar, B., Grabbe, S., Chen, N.: Cross-polar aircraft trajectory optimization and the potential climate impact. 30th Digital Avionics Systems Conference (DASC), Seattle, WA (2011)

    Google Scholar 

  • Ng, H.K., Sridhar, B., Grabbe, S., Chen, N.: A practical approach for optimizing aircraft trajectories in winds. 31st Digital Avionics Systems Conference, Institute of Electrical and Electronics Engineers, Williamsburg, VA (2012)

    Google Scholar 

  • Palopo, K., Windhorst, R.D., Suharwardy, S., Lee, H.-T.: Wind optimal routing in the National Airspace System. J. Aircraft 47(5), 1584–1592 (2010)

    Article  Google Scholar 

  • Sharman, R.D., Tebaldi, C., Wiener, G., Wolff, J.: An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecast 21(3), 268–287 (2006)

    Article  Google Scholar 

  • Sharman, R.D., Doyle, J.D., Shapiro, M.A.: An investigation of a commercial aircraft encounter with severe clear-air turbulence over western Greenland. J. Appl. Meteorol. Climatol. 51, 42–53 (2011)

    Article  Google Scholar 

  • Sharman, R.D., Trier, S.B., Lane, T.P., Doyle, J.D.: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review. Geophys. Res. Lett. 39, L12803 (2012). doi:10.1029/2012GL051996

    Article  Google Scholar 

  • Sharman, R.D., Cornman, L.B., Meymaris, G., Pearson, J., Farrar, T.: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53(6), 1416–1432 (2014). doi:10.1175/JAMC-D-13-0329.1

    Article  Google Scholar 

  • Sridhar, B., Ng, H.K., Chen, N.Y.: Aircraft trajectory optimization and contrails avoidance in the presence of winds. 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Fort Worth, TX (2010)

    Google Scholar 

  • Steiner, M., Bateman, R., Megenhardt, D., Liu, Y., Pocernich, M., Krozel, J.: Translation of ensemble weather forecasts into probabilistic air traffic capacity impact. Air Traffic Control Quart. 18(3), 229–254 (2010)

    Google Scholar 

  • Trier, S.B., Sharman, R.D.: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a Mesoscale Convective System. Mon. Weather Rev. 137(6), 1972–1990 (2009)

    Article  Google Scholar 

  • Trier, S.B., Sharman, R.D., Fovell, R.G., Frehlich, R.G.: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci. 67(9), 2990–2999 (2010)

    Article  Google Scholar 

  • Williams, P.D., Joshi, M.M.: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Climate Change 3(7), 644–648 (2013). doi:10.1038/nclimate1866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, JH., Chan, W.N., Sridhar, B. (2016). Application of Aviation Turbulence Information to Air-Traffic Management (ATM). In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics