Skip to main content

Similarity of Stably Stratified Geophysical Flows

  • Chapter
  • First Online:
Aviation Turbulence

Abstract

The article reviews the gradient-based similarity theory of shear-dominated, stably-stratified turbulent flows. The gradient-based similarity scales are classified as explicit or implicit. The explicit scaling employs the length scale as a specified function of height. Within the implicit type, the mixing length is locally related to various moments of turbulence. The analytical form of the explicit similarity functions of the Richardson number Ri is obtained based on experimental data collected in the atmospheric surface layer. The implicit similarity functions can be derived by renormalization of the explicit-type expressions. Since the implicit scales and similarity functions are not directly dependent on height, they are expected to be universally valid in shear-driven, stably-strafified turbulent flows, in the atmospheric boundary layer and in the upper atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alappattu, D.P., Kunhikrishnan, P.K.: First observations of turbulence parameters in the troposphere over the Bay of Bengal and the Arabian Sea using radiosonde. J. Geophys. Res. 115, D06105 (2010). doi:10.1029/2009JD012916

    Article  Google Scholar 

  • Andreas, E.L., Fairall, C.W., Guest, P.S., Persson, P.O.G.: An overview of the SHEBA atmospheric surface flux program. 13th Symposium on Boundary Layers and Turbulence, Dallas, TX. Am. Meteorol. Soc. Proc. 550–555 (1999)

    Google Scholar 

  • Baas, P., Steeneveld, G.J., van de Wiel, B.J.H., Holtslag, A.A.M.: Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J. Atmos. Sci. 63, 3045–3054 (2006)

    Article  Google Scholar 

  • Basha, H.A.: High resolution observations of turbulence in the troposphere and lower stratosphere over Gadanki. Ann. Geophys. 27, 2407–2415 (2009)

    Article  Google Scholar 

  • Blackadar, A.K.: The vertical distribution of wind and turbulent exchange in neutral atmosphere. J. Geophys. Res. 67, 3095–3103 (1962)

    Article  MATH  Google Scholar 

  • Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)

    Article  Google Scholar 

  • Caughey, S.J., Wyngaard, J.C., Kaimal, J.C.: Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36(6), 1041–1052 (1979)

    Article  Google Scholar 

  • Champagne, F.H., Friehe, C.A., Larue, J.C.: Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci. 34, 515–530 (1977)

    Article  Google Scholar 

  • Cimatoribus, A., van Haren, A.H., Gostiaux, L.: Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations. J. Geophys. Res. Oceans 119, 7047–7065 (2014). doi:10.1002/2014JC010132

    Article  Google Scholar 

  • Clayson, C.A., Kantha, L.: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol. 25, 833–852 (2008)

    Article  Google Scholar 

  • Crawford, W.R.: A comparison of length scales and decay times of turbulence in stably stratified flows. J. Phys. Oceanogr. 16(11), 2147–2153 (1986)

    Article  Google Scholar 

  • Delage, Y.: A numerical study of the nocturnal atmospheric boundary layer. Q. J. Roy. Meteorol. Soc. 100, 351–364 (1974)

    Article  Google Scholar 

  • Dillon, T.M.: Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87(C12), 9601–9613 (1982). doi:10.1029/JC087iC12p09601

    Article  Google Scholar 

  • Dougherty, J.P.: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21, 210–213 (1961)

    Article  Google Scholar 

  • Ellison, T.H.: Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 2, 456–466 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrron, B., Mercier, H., Speer, K., Gargett, A., Polzin, K.: Mixing in the romance fracture zone. J. Phys. Oceanogr. 28, 1929–1946 (1998)

    Article  Google Scholar 

  • Foken, T.: 50 Years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol. 2, 7–29 (2006)

    Google Scholar 

  • Gavrilov, N.M., Luce, H., Crochet, M., Dalaudier, F., Fukao, S.: Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys. 23, 2401–2413 (2005)

    Article  Google Scholar 

  • Grachev, A.A., Fairall, C.W., Persson, P.O.G., Andreas, E.L., Guest, P.S.: Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol. 116(2), 201–235 (2005). doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Grachev, A.A., Andreas, E.L., Fairall, C.W., Guest, P.S., Persson, P.O.G.: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol. 147(1), 51–82 (2013). doi:10.1007/s10546-012-9771-0

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest, PS, Persson OG.: Similarity theory based on the Dougherty–Ozmidov length scale. Q. J. R. Meteorol. Soc. (2015) doi: 10.1002/qj.2488

    Google Scholar 

  • Haack, A.M., Gerding, M., Lübken, F.-J.: Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J. Geophys. Res. Atmos. 119(10), 10,605–10,618 (2014). doi:10.1002/2013JD021008#_blank#Link

    Article  Google Scholar 

  • Huang, J., Bou-Zeid, E., Golaz, J.C.: Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part II: A novel mixing-length model. J. Atmos. Sci. 70, 1528–1542 (2013)

    Article  Google Scholar 

  • Hunt, J.C.R., Kaimal, J.C., Gaynor, J.E.: Some observations of turbulence structure in stable layers. Q. J. Roy. Meteorol. Soc. 111, 793–815 (1985)

    Article  Google Scholar 

  • Itsweire, E.C.: Measurements of vertical overturns in a stably stratified turbulent flow. Phys. Fluids 27(4), 764–766 (1984). doi:10.1063/1.864704

    Article  Google Scholar 

  • Klipp, C.L., Mahrt, L.: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q. J. Roy. Meteorol. Soc. 130, 2087–2103 (2004)

    Article  Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Doklady AS USSR 30, 299–303 (1941) (in Russian)

    Google Scholar 

  • Luce, H., Wilson, R., Dalaudier, F., Hashiguchi, H., Nishi, N., Shibagaki, Y., Nakajo, T.: Simultaneous observations of tropospheric turbulence from radiosondes using Thorpe analysis and the VHF MU radar. Radio Sci. 49, 1106–1123 (2014). doi:10.1002/2013RS005355

    Article  Google Scholar 

  • Mater, B.D., Venayagamoorthy, S.K.: A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids 26(3), 036601 (2014). doi:10.1063/1.4868142

    Article  Google Scholar 

  • Mater, B.D., Schaad, S.M., Venayagamoorthy, S.K.: Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids 25, 076604 (2013). doi:10.1063/1.4813809

    Article  Google Scholar 

  • Monin, A.S., Obukhov, A.M.: Basic laws of turbulence mixing in the surface layer of the atmosphere. Trudy Geof. Inst. AN SSSR 24, 163–187 (1954)

    Google Scholar 

  • Nieuwstadt, F.T.M.: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 2202–2216 (1984)

    Article  Google Scholar 

  • Oakey, N.S.: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr. 12(3), 256–271 (1982)

    Article  Google Scholar 

  • Obukhov, A.M.: On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32(1), 22–24 (1941)

    MathSciNet  Google Scholar 

  • Ozmidov, R.V.: On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 861–871 (1965)

    Google Scholar 

  • Persson, P.O.G., Fairall, C.W., Andreas, E.L., Guest, P.S., Perovich, D.K.: Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J. Geophys. Res. 107(C10), SHE21.1–SHE21.35 (2002)

    Article  Google Scholar 

  • Prandtl, L.: Uber die ausgebildete Turbulenz. Proceedings of the Second International Congress for Applied Mechanics, Zürich, pp. 62–74 (1926)

    Google Scholar 

  • Sorbjan, Z.: Gradient-based similarity in the atmospheric boundary layer. Acta Geophys. 56(1), 220–233 (2008a)

    Google Scholar 

  • Sorbjan, Z.: Local scales of turbulence in the stable boundary layer boundary layer. Boundary-Layer Meteorol. 127(2), 261–271 (2008b)

    Article  Google Scholar 

  • Sorbjan, Z.: The height correction of the gradient-based and flux-based similarity functions in the stable boundary layer. Boundary-Layer Meteorol. 142, 21–31 (2012)

    Article  Google Scholar 

  • Sorbjan, Z.: Gradient-based similarity in the stable atmospheric boundary layer. In: Achievements, History and Challenges in Geophysics. GeoPlanet: Earth and Planetary Sciences pp. 351–375 (2014)

    Google Scholar 

  • Sorbjan, Z.: Similarity scaling systems for stably stratified turbulent flows. Q. J. R. Meteorol. Soc. 142(695), 805–810 (2016)

    Article  Google Scholar 

  • Sorbjan, Z., Balsley, B.B.: Microstructure of turbulence in the nocturnal boundary layer. Boundary-Layer Meteorol. 129, 191–210 (2009)

    Article  Google Scholar 

  • Sorbjan, Z., Czerwinska, A.: Statistics of turbulence in the stable boundary layer affected by gravity waves. Boundary-Layer Meteorol. 148(1), 73–91 (2013)

    Article  Google Scholar 

  • Sorbjan, Z.: Gradient-based scales and similarity laws in the stable boundary layer. Q. J. R. Meteorol. Soc. 136, 1243–1254 (2010)

    Google Scholar 

  • Thorpe, S.A.: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. A 286, 125–181 (1977). doi:10.1098/rsta.1977.0112

    Article  Google Scholar 

  • Wyngaard, J.C., Coté, O.R.: Cospectral similarity in the atmospheric surface layer. Q. J. Roy. Meteorol. Soc. 98, 590–603 (1972)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported within statutory activities No 3841/E-41/S/2015 of the Ministry of Science and Higher Education of Poland and the US National Science Foundation grant AGS-1500900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Sorbjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sorbjan, Z. (2016). Similarity of Stably Stratified Geophysical Flows. In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics