Skip to main content

Gravity Waves Generated by Jets and Fronts and Their Relevance for Clear-Air Turbulence

  • Chapter
  • First Online:

Abstract

Jets and fronts are known from observations and modeling studies to be an important source of gravity waves, primarily waves with low intrinsic frequencies. Waves in the jet-exit regions have recurrently been documented and are now rather well understood. Nonetheless, other waves (e.g., involving convection) are also present in the jet/front regions, and there is no simple model available yet to quantitatively predict excited waves from the knowledge of the large-scale flow. Only a handful of case studies have analyzed how jet-generated gravity waves contribute to the occurrence of clear-air turbulence (CAT) in the vicinity of the upper tropospheric jet. They have confirmed that the modulation of vertical shear and stability by strong, low-frequency gravity waves produces localized bands of turbulence. Further studies would be required to discriminate between this and other mechanisms (convectively generated gravity waves, inertial instability) that lead to CAT in the vicinity of jet streaks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander, M.J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T.A., Sigmond, M., Vincent, R., Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. Roy. Meteorol. Soc. 136, 1103–1124 (2010)

    Google Scholar 

  • Bei, N., Zhang, F.: Mesoscale predictability of moist baroclinic waves: variable and scale dependent error growth. Adv. Atmos. Sci., p. 9951008 (2014) doi:10.1007/s00376-014-3191-7

    Google Scholar 

  • Beres, J., Alexander, M., Holton, J.: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci. 61, 324–337 (2004)

    Article  Google Scholar 

  • Blumen, W.: Geostrophic adjustment. Rev. Geophys. Space Phys. 10(2), 485–528 (1972)

    Article  Google Scholar 

  • Bosart, L., Bracken, W., Seimon, A.: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Weather Rev. 126, 1497–1527 (1998)

    Article  Google Scholar 

  • Bühler, O., McIntyre, M.: Wave capture and wave-vortex duality. J. Fluid Mech. 534, 67–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bühler, O., McIntyre, M., Scinocca, J.: On shear-generated gravity waves that reach the mesosphere. Part I: Wave generation. J. Atmos. Sci. 56, 3749–3763 (1999)

    Article  Google Scholar 

  • Charney, J.: On the scale of atmospheric motions. Geophys. Publ. Oslo 17(2), 1–17 (1948)

    MathSciNet  Google Scholar 

  • Charron, M., Manzini, E.: Gravity waves from fronts: parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci. 59, 923–941 (2002)

    Article  MathSciNet  Google Scholar 

  • Chimonas, G., Grant, J.: Shear excitation of gravity waves. Part II: Upscale scattering from Kelvin-Helmholtz waves. J. Atmos. Sci. 41, 2278–2288 (1984)

    Article  Google Scholar 

  • Clark, T.: A small-scale dynamical model using a terrain following coordinate transformation. J. Comput. Phys. 24, 186–215 (1977)

    Article  MATH  Google Scholar 

  • Eady, E.: Long waves and cyclone waves. Tellus 1, 33–52 (1949)

    Article  MathSciNet  Google Scholar 

  • Ford, R.: Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281, 81–118 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, R.: The response of a rotating ellipse of uniform potential vorticity to gravity wave radiation. Phys. Fluids 6(11), 3694–3704 (1994b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, R.: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech. 280, 303–334 (1994c)

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, R., McIntyre, M.E., Norton, W.A.: Balance and the slow quasi-manifold: some explicit results. J. Atmos. Sci. 57, 1236–1254 (2000)

    Article  MathSciNet  Google Scholar 

  • Fritts, D.: Shear excitation of atmospheric gravity waves. J. Atmos. Sci. 39, 1936–1952 (1982)

    Article  Google Scholar 

  • Fritts, D.: Shear excitation of atmospheric gravity waves. 2: Nonlinear radiation from a free shear-layer. J. Atmos. Sci. 41, 524–537 (1984)

    Article  Google Scholar 

  • Fritts, D., Alexander, M.: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41(1), 1003 (2003)

    Article  MathSciNet  Google Scholar 

  • Fritts, D., Nastrom, G.: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci. 49(2), 111–127 (1992)

    Article  Google Scholar 

  • Fritts, D., Bizon, C., Werne, J., Meyer, C.: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res. 108(D8), 8452 (2003)

    Article  Google Scholar 

  • Geller, M., Alexander, M., Love, P., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A., Zhou, T.: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate 26, 6383–6405 (2013). doi:10.1175/JCLI-D-1200545.1

    Article  Google Scholar 

  • Gettelman, A., Hoor, P., Pan, L., Randel, W., Hegglin, M., Birner, T.: The extratropical upper troposphere and lower stratosphere. Rev. Geophys. 49(RG3003), 2011RG000,355 (2011)

    Google Scholar 

  • Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press/Harcourt Brace, San Diego, CA (1982)

    Google Scholar 

  • Guest, F., Reeder, M., Marks, C., Karoly, D.: Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci. 57, 737–752 (2000)

    Article  Google Scholar 

  • Gula, J., Zeitlin, V., Plougonven, R.: Instabilities of two-layer shallow-water flows with vertical shear in the rotating annulus. J. Fluid Mech. 638, 27–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hertzog, A., Souprayen, C., Hauchecorne, A.: Observation and backward trajectory of an inertia-gravity wave in the lower stratosphere. Ann. Geophys. 19, 1141–1155 (2001)

    Article  Google Scholar 

  • Hertzog, A., Boccara, G., Vincent, R., Vial, F., Coquerez, P.: Estimation of gravity-wave momentum fluxes and phase speeds from long-duration stratospheric balloon flights. 2. Results from the Vorcore campaign in Antarctica. J. Atmos. Sci. 65, 3056–3070 (2008)

    Article  Google Scholar 

  • Hertzog, A., Alexander, M., Plougonven, R.: On the probability density functions of gravity waves momentum flux in the stratosphere. J. Atmos. Sci. 69, 3433–3448 (2012)

    Article  Google Scholar 

  • Hirota, I., Niki, T.: Inertia-gravity waves in the troposphere and stratosphere observed by the MU radar. J. Meteor. Soc. Japan 64, 995–999 (1986)

    Google Scholar 

  • Hoffmann, L., Xue, X., Alexander, M.: A global view of stratospheric gravity wave hotspots located with atmospheric infrared sounder observations. J. Geophys. Res. 118, 416–434 (2013)

    Google Scholar 

  • Holton, J.R.: An Introduction to Dynamic Meteorology, 3rd edn. Academic Press, London (1992)

    Google Scholar 

  • Hoskins, B.J.: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131–151 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoskins, B.J., Bretherton, F.P.: Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 11–37 (1972)

    Article  Google Scholar 

  • Hoskins, B., McIntyre, M., Robertson, A.: On the use and significance of isentropic potential vorticity maps. Q. J. Roy. Meteorol. Soc. 111(470), 877–946 (1985)

    Article  Google Scholar 

  • Kennedy, P., Shapiro, M.: Further encounters with clear air turbulence in research aircraft. J. Atmos. Sci. 37, 986–993 (1980)

    Article  Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol. 49, 2381–2404 (2010)

    Article  Google Scholar 

  • Kim, J.-H., Chun, H.-Y.: Statistics and possible sources of aviation turbulence over South Korea. J. App. Meteor. Climatol. 50, 311–324 (2011)

    Article  Google Scholar 

  • Kim, Y.-J., Eckermann, S., Chun, H.-Y.: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos Ocean 41, 65–98 (2003)

    Article  Google Scholar 

  • Knox, J.: Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Weather Rev. 125, 1251–1259 (1997)

    Article  Google Scholar 

  • Knox, J., McCann, D., Williams, P.: Application of the Lighthill-Ford theory of spontaneous imbalance to Clear-Air Turbulence forecasting. J. Atmos. Sci. 65, 3292–3304 (2008)

    Article  Google Scholar 

  • Knox, J., McCann, D., Williams, P.: Reply. J. Atmos. Sci. 66, 2511–2516 (2009)

    Article  Google Scholar 

  • Koch, S., O’Handley, C.: Operational forecasting and detection of mesoscale gravity waves. Weather Forecasting 12, 253–281 (1997)

    Article  Google Scholar 

  • Koch, S., Jamison, B., Lu, C., Smith, T., Tollerud, E., Girz, C., Wang, N., Lane, T., Shapiro, M., Parrish, D., Cooper, O.: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci. 62, 3885–3908 (2005)

    Article  Google Scholar 

  • Koppel, L., Bosart, L., Keyser, D.: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Weather Rev. 128(1), 51–68 (2000)

    Article  Google Scholar 

  • Lalas, D., Einaudi, F.: On the characteristics of waves generated by shear layers. J. Atmos. Sci. 33, 1248–1259 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Lane, T.P., Doyle, J.D., Plougonven, R., Shapiro, M.A., Sharman, R.D.: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci. 61(22), 2692–2706 (2004)

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D., Trier, S.B., Fovell, R.G., Williams, J.K.: Recent advances in the understanding of near-cloud turbulence. Bull. Am. Meteorol. Soc. 93(4), 499–515 (2012). doi:10.1175/BAMS-D-11-00062.1

    Article  Google Scholar 

  • Leith, C.: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958–968 (1980)

    Article  MathSciNet  Google Scholar 

  • Lighthill, J.M.: On sound generated aerodynamically. I. General theory. Proc. Roy. Soc. London 211(A), 564–587 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Y., Zhang, F.: Tracking gravity waves in baroclinic jet-front systems. J. Atmos. Sci. 65, 2402–2415 (2008)

    Article  Google Scholar 

  • Lindborg, E.: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259–288 (1999)

    Article  MATH  Google Scholar 

  • Lorenz, E.: Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 1685–1699 (1980)

    Article  MathSciNet  Google Scholar 

  • Lott, F., Plougonven, R., Vanneste, J.: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci. 67, 157–170 (2010). doi:10.1175/2009JAS3134.1

    Article  Google Scholar 

  • Lovegrove, A., Read, P., Richards, C.: Generation of inertia-gravity waves in a baroclinically unstable fluid. Q. J. Roy. Meteorol. Soc. 126, 3233–3254 (2000)

    Article  Google Scholar 

  • Lu, C., Koch, S.: Interactions of upper-tropospheric turbulence and gravity waves as obtained from spectral and structure function analyses. J. Atmos. Sci. 65, 2676–2690 (2008). doi:10.1175/2007JAS2660.1

    Article  Google Scholar 

  • Mancuso, R., Endlich, R.: Clear air turbulence frequency as a function of wind shear and deformation. Mon. Weather Rev. 94, 581–585 (1966)

    Article  Google Scholar 

  • Mastrantonio, G., Einaudi, F., Fua, D., Lalas, D.: Generation of gravity waves by jet streams in the atmosphere. J. Atmos. Sci. 33, 1730–1738 (1976)

    Article  Google Scholar 

  • McIntyre, M., Weissman, M.: On radiating instabilities and resonant overreflection. J. Atmos. Sci. 35, 1190–1196 (1978)

    Article  Google Scholar 

  • Mirzaei, M., Zuelicke, C., Moheballojeh, A., Ahmadi-Givi, F., Plougonven, R.: Structure, energy and parameterization of inertia-gravity waves in dry and moist simulations of a baroclinic wave life cycle. J. Atmos. Sci. 71, 2390–2414 (2014)

    Article  Google Scholar 

  • Nastrom, G., Fritts, D.: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci. 49(2), 101–109 (1992)

    Article  Google Scholar 

  • Nastrom, G., Gage, K.: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42(9), 950–960 (1985)

    Article  Google Scholar 

  • O’Sullivan, D., Dunkerton, T.: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci. 52(21), 3695–3716 (1995)

    Article  Google Scholar 

  • Pan, L.L., Bowman, K.P., Atlas, E.L., Wofsy, S.C., Zhang, F., Bresch, J.F., Ridley, B.A., Pittman, J.V., Homeyer, C.R., Romashkin, P., Cooper, W.A.: The stratosphere–troposphere analyses of regional transport 2008 experiment. Bull. Am. Meteor. Soc. 91, 327–342 (2010)

    Article  Google Scholar 

  • Pavelin, E., Whiteway, J., Vaughan, G.: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res. 106(D6), 5173–5179 (2001)

    Article  Google Scholar 

  • Piani, C., Durran, D., Alexander, M., Holton, J.: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci. 57(22), 3689–3702 (2000)

    Article  Google Scholar 

  • Plougonven, R., Snyder, C.: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci. 64, 2502–2520 (2007)

    Article  Google Scholar 

  • Plougonven, R., Snyder, C.: Gravity waves excited by jets: propagation versus generation. Geophys. Res. Lett. 32(L18892), (2005). doi:10.1029/2005GL023,730

  • Plougonven, R., Teitelbaum, H.: Comparison of a large-scale inertia-gravity wave as seen in the ECMWF and from radiosondes. Geophys. Res. Lett. 30(18), 1954 (2003)

    Article  Google Scholar 

  • Plougonven, R., Zeitlin, V.: Internal gravity wave emission from a pancake vortex: an example of wave-vortex interaction in strongly stratified flows. Phys Fluids 14(3), 1259–1268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Plougonven, R., Zhang, F.: On the forcing of inertia-gravity waves by synoptic-scale flows. J. Atmos. Sci. 64, 1737–1742 (2007)

    Article  Google Scholar 

  • Plougonven, R., Zhang, F.: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52, 33–76 (2014)

    Article  Google Scholar 

  • Plougonven, R., Teitelbaum, H., Zeitlin, V.: Inertia-gravity wave generation by the tropospheric mid-latitude jet as given by the FASTEX radio soundings. J. Geophys. Res. 108(D21), 4686 (2003)

    Article  Google Scholar 

  • Plougonven, R., Muraki, D., Snyder, C.: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci. 62, 1545–1559 (2005)

    Article  MathSciNet  Google Scholar 

  • Plougonven, R., Snyder, C., Zhang, F.: Comments on ‘Application of the Lighthill-Ford theory of spontaneous imbalance to clear-air turbulence forecasting’. J. Atmos. Sci. 66, 2506–2510 (2009)

    Article  Google Scholar 

  • Plougonven, R., Hertzog, A., Guez, L.: Gravity waves over Antarctica and the Southern Ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Q. J. Roy. Meteorol. Soc. 139, 101–118 (2013)

    Article  Google Scholar 

  • Plougonven, R., Hertzog, A., Alexander, M.: Case studies of non-orographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. 120, 1278–1299 (2015)

    Google Scholar 

  • Powers, J., Reed, R.: Numerical simulation of the large-amplitude mesoscale gravity wave event of 15 December 1987 in the Central United States. Mon. Weather Rev. 121, 2285–2308 (1993)

    Article  Google Scholar 

  • Queney, P.: The problem of air flow over mountains: a summary of theoretical studies. Bull. Am. Meteorol. Soc. 29, 16–26 (1948)

    Google Scholar 

  • Ralph, F., Neiman, P., Keller, T.: Deep-tropospheric gravity waves created by leeside cold fronts. J. Atmos. Sci. 56, 2986–3009 (1999)

    Article  Google Scholar 

  • Reeder, M.J., Griffiths, M.: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. Part II: Wave sources, generation mechanisms and momentum fluxes. Q. J. Roy. Meteorol. Soc. 122, 1175–1195 (1996)

    Google Scholar 

  • Richter, J., Sassi, F., Garcia, R.: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci. 67, 136–156 (2010). doi:10.1175/2009JAS3112.1

    Article  Google Scholar 

  • Rossby, C.: On the mutual adjustment of pressure and velocity distributions in certain simple current systems II. J. Mar. Res. 1, 239–263 (1938)

    Article  Google Scholar 

  • Sato, K.: A statistical study of the structure, saturation and sources of inertia-gravity waves in the lower stratosphere observed with the MU radar. J. Atmos. Terr. Phys. 56(6), 755–774 (1994)

    Article  Google Scholar 

  • Schecter, D.: The spontaneous imbalance of an atmospheric vortex at high Rossby number. J. Atmos. Sci. 65, 2498–2521 (2008)

    Article  Google Scholar 

  • Scinocca, J., Ford, R.: The nonlinear forcing of large-scale internal gravity waves by stratified shear instability. J. Atmos. Sci. 57, 653–672 (2000)

    Article  MathSciNet  Google Scholar 

  • Scolan, H., Flor, J.-B., Gula, J.: Frontal instabilities and waves in a differentially rotating fluid. J. Fluid Mech. 685, 532–542 (2011)

    Article  MATH  Google Scholar 

  • Sharman, R.D., Trier, S.B., Lane, T.P., Doyle, J.D.: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review. Geophys. Res. Lett. 39, L12803 (2012). doi:10.1029/2012GL051996

    Article  Google Scholar 

  • Skamarock, W.C.: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 132, 3019–3032 (2004)

    Article  Google Scholar 

  • Snyder, C., Skamarock, W., Rotunno, R.: Frontal dynamics near and following frontal collapse. J. Atmos. Sci. 50(18), 3194–3211 (1993)

    Article  Google Scholar 

  • Snyder, C., Muraki, D., Plougonven, R., Zhang, F.: Inertia-gravity waves generated within a dipole vortex. J. Atmos. Sci. 64, 4417–4431 (2007)

    Article  Google Scholar 

  • Snyder, C., Plougonven, R., Muraki, D.: Forced linear inertia-gravity waves on a basic-state dipole vortex. J. Atmos. Sci. 66(11), 3464–3478 (2009)

    Article  Google Scholar 

  • Sugimoto, N., Ishioka, K., Ishii, K.: Parameter sweep experiments on spontaneous gravity wave radiation from unsteady rotational flow in an f-plane shallow water system. J. Atmos. Sci. 65, 235–249 (2008)

    Article  Google Scholar 

  • Thomas, L., Worthington, R., McDonald, A.: Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Ann. Geophys. 17, 115–121 (1999)

    Article  Google Scholar 

  • Trier, S.B., Sharman, R.D., Lane, T.P.: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Weather Rev. 140(8), 2477–2496 (2012). doi:10.1175/MWR-D-11-00353.1

    Article  Google Scholar 

  • Uccelini, L., Koch, S.: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Weather Rev. 115, 721–729 (1987)

    Article  Google Scholar 

  • Vanneste, J.: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 147–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Vanneste, J., Yavneh, I.: Exponentially small inertia-gravity waves and the breakdown of quasi-geostrophic balance. J. Atmos. Sci. 61, 211–223 (2004)

    Article  MathSciNet  Google Scholar 

  • Vanneste, J., Yavneh, I.: Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech. 584, 373–396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Viudez, A.: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech. 593, 359–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Viudez, A.: The stationary frontal wave packet spontaneously generated in mesoscale dipoles. J. Phys. Oceanogr. 38, 243–256 (2008)

    Article  Google Scholar 

  • Waite, M.L., Snyder, C.: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci. 66(4), 883–901 (2009)

    Article  Google Scholar 

  • Waite, M.L., Snyder, C.: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci. 70(4), 1242–1256 (2012)

    Article  Google Scholar 

  • Wang, S., Zhang, F.: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci. 67, 1438–1455 (2010)

    Article  Google Scholar 

  • Wang, S., Zhang, F., Snyder, C.: Generation and propagation of inertia-gravity waves from vortex dipoles and jets. J. Atmos. Sci. 66, 1294–1314 (2009)

    Article  Google Scholar 

  • Wang, S., Zhang, F., Epifanio, C.: Forced gravity wave response near the jet exit region in a linear model. Q. J. Roy. Meteorol. Soc. 136, 1773–1787 (2010)

    Article  Google Scholar 

  • Wei, J., Zhang, F.: Mesoscale gravity waves in moist baroclinic jet-front systems. J. Atmos. Sci. 71, 929–952 (2014). doi:10.1175/JAS-D-13-0171.1

    Article  Google Scholar 

  • Whiteway, J., Klaassen, G., Bradshaw, N., Hacker, J.: Transition to turbulence in shear above the tropopause. Geophys. Res. Lett. 31, L02,118 (2004)

    Article  Google Scholar 

  • Williams, P., Haine, T., Read, P.: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 1–22 (2005)

    Article  MATH  Google Scholar 

  • Williams, P., Haine, T., Read, P.: Inertia gravity waves emitted from balanced flow: observations, properties, and consequences. J. Atmos. Sci. 65(11), 3543–3556 (2008)

    Article  Google Scholar 

  • Wright, C., Osprey, S., Gille, J.: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. 118, 10,980–10,993 (2013). doi:10.1002/jgrd.50869

    Google Scholar 

  • Wu, D. L., Zhang, F.: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res. 109(D22104) (2004). doi:10.1029/2004JD005090

    Google Scholar 

  • Zhang, F.: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci. 61(4), 440–457 (2004)

    Article  Google Scholar 

  • Zhang, F., Koch, S., Davis, C., Kaplan, M.: Wavelet analysis and the governing dynamics of a large amplitude mesoscale gravity wave event along the east coast of the United States. Q. J. Roy. Meteorol. Soc. 127, 2209–2245 (2001)

    Article  Google Scholar 

  • Zhang, F., Koch, S.E., Kaplan, M.L.: Numerical simulations of a large-amplitude gravity wave event. Meteorol. Atmos. Phys. 84, 199–216 (2003)

    Article  Google Scholar 

  • Zhang, F., Zhang, M., Wei, J., Wang, S.: Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations. Acta Meteorol. Sin. 27, 446–454 (2013)

    Article  Google Scholar 

  • Zhang, F., Wei, J., Zhang, M., Bowman, P., Pan, L., Atlas, E., Wolfsy, S.: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the start08 field experiment. Atmos. Chem. Phys. Discuss. 15, 4725–4766 (2015). doi:10.5194/acpd-15-4725-2015

    Article  Google Scholar 

  • Zülicke, C., Peters, D.: Simulation of inertia-gravity waves in a poleward breaking Rossby wave. J. Atmos. Sci. 63, 3253–3276 (2006)

    Article  Google Scholar 

  • Zülicke, C., Peters, D.: Parameterization of strong stratospheric inertia gravity waves forced by poleward breaking Rossby waves. Mon. Weather Rev. 136, 98–119 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riwal Plougonven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plougonven, R., Zhang, F. (2016). Gravity Waves Generated by Jets and Fronts and Their Relevance for Clear-Air Turbulence. In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics