Skip to main content

Inverse Problems

  • Chapter
  • First Online:
  • 2435 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 87))

Abstract

The direct problem in reflection is the calculation of the reflection amplitudes (and thence the reflectivities and the ellipsometric ratio), given the characteristics of the reflecting profile. Inverse or inversion problems consist in the estimation of the profile characteristics, given some experimental reflection or transmission data (or both).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aspnes DE (1976) Spectroscopic ellipsometry of solids. In: Seraphin BO (ed) Optical properties of solids: new developments. North Holland, Amsterdam (Chapter 15)

    Google Scholar 

  • Azzam RMA (1979) Direct relation between Fresnel’s interface reflection coefficients for the parallel and perpendicular polarisations. J Opt Soc Am 69:1007–1016

    Article  ADS  Google Scholar 

  • Azzam RMA (1983) Ellipsometry of unsupported and embedded thin films. J de Phys C 10:67–70

    Google Scholar 

  • Gelfand IM, Levitan BM (1951/1955) On the determination of a differential equation by its spectral function. Am Math Soc Tran (Ser. 2) 1:253–304

    Google Scholar 

  • Hirsch J (1979) An analytic solution to the synthesis problem for dielectric thin-film layers. Optica. Acta 26:1273–1279

    Google Scholar 

  • Humphreys-Owen SPF (1961) Comparison of reflection methods of measuring optical constants, and proposal for new methods based on the Brewster angle. Proc Phys Soc 77:949–957

    Article  ADS  Google Scholar 

  • Jordan A K (1980) Inverse scattering theory: exact and approximate solutions. In: DeSanto JA, Sáenz AW, Zachary WW (eds) Mathematical methods and applications of scattering theory. Springer Lecture Notes in Physics No. 130

    Google Scholar 

  • Kay I, Moses HE (1956) Reflectionless transmission through dielectrics and scattering potentials. J Appl Phys 27:1503–1508

    Article  ADS  MATH  Google Scholar 

  • Kay I (1960) The inverse scattering problem when the reflection coefficient is a rational function. Commun Pure Appl Math 13:371–393

    Article  MathSciNet  MATH  Google Scholar 

  • Kofink W (1947) Reflexion elektromagnetischer Wellen an einer inhomogenen Schicht. Ann Phys 1:119–132

    Article  MathSciNet  Google Scholar 

  • Lekner J (1990) Analytic inversion of ellipsometric data for an unsupported nonabsorbing uniform layer. J Opt Soc Am A: 7:1875–1877

    Article  ADS  Google Scholar 

  • Lekner J (1994a) Inversion of transmission ellipsometric data for transparent films. Appl Opt 33:5108–5110

    Article  ADS  Google Scholar 

  • Lekner J (1994b) Inversion of reflection ellipsometric data. Appl Opt 33:5159–5165

    Article  ADS  Google Scholar 

  • Lekner J (1997) Inversion of the s and p reflectances of absorbing media. J Opt Soc Am A 14:1355–1358

    Article  ADS  Google Scholar 

  • Moses HE (1956) Calculation of the scattering potential from reflection coefficients. Phys Rev 102:559–567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Potter RF (1969) Pseudo-Brewster angle technique for determining optical constants. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum, New York

    Google Scholar 

  • Vašiček A (1960) Optics of thin films. North-Holland, Amsterdam (Section 5.2)

    Google Scholar 

  • Wooten F (1972) Optical properties of solids. Academic Press, New York

    Google Scholar 

Further Readings

  • Introductory and review articles on inverse problems

    Google Scholar 

  • Dyson FJ (1976) Old and new approaches to the inverse scattering problem. In: Lieb EH, Simon B, Wightman AS (eds) Studies in mathematical physics, essays in Honor of Valentine Bargmann. Princeton University Press, Princeton, pp 151–167

    Google Scholar 

  • Kac M (1966) Can one hear the shape of a drum? Am. Math. Monthly 73(Pt.II):1–23

    Google Scholar 

  • Keller JB (1976) Inverse problems. Am Math Monthly 83:107–118

    Article  Google Scholar 

  • Newton RG (1970) Inverse problems in physics. SIAM Rev 12:346–355

    Article  MathSciNet  Google Scholar 

  • Papers and books on the inverse problem of scattering and diffraction theory

    Google Scholar 

  • Agranovich ZS, Marchenko VA (1963) The inverse problem of scattering theory. Gordon and Breach, New York

    Google Scholar 

  • Bargmann V (1949a) Remarks on the determination of a central field of force from the elastic scattering phase shifts. Phys Rev 75:301–303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bargmann V (1949b) On the connection between phase shifts and scattering potential. Rev Mod Phys 21:488–493

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chadan K, Sabatier PC (1977) Inverse problems in quantum scattering theory. Springer, New York

    Google Scholar 

  • Faddeev LD (1963) The inverse problem in the quantum theory of scattering. J Math Phys 4:72–104

    Article  ADS  MathSciNet  Google Scholar 

  • Jost R, Kohn W (1952) Equivalent potentials. Phys Rev 88:382–385

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchenko VA (1955) The construction of the potential energy from the phases of the scattered waves. Dokl Akad Nauk SSSR 104:695–698 Math. Rev. 17:740 (1956))

    Google Scholar 

  • Nieto-Vesperinas M (2006) Scattering and diffraction in physical optics, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Collections of papers on electromagnetic and optical inverse problems

    Google Scholar 

  • Baltes HP (ed) (1978) Inverse source problems in optics. Springer, Berlin

    Google Scholar 

  • Baltes HP (ed) (1980) Inverse scattering problems in optics. Springer, Berlin

    Google Scholar 

  • Boemer WM, Jordan AK, Kay IW (eds) (1981) IEEE transactions on antennas and propagation. Inverse Methods Electromagnet AP-29(2):185–417

    Google Scholar 

  • Devaney AJ (ed) (1985) Inverse problems in propagation and scattering. J Opt Soc Am A2:1901–2061 (In relation to Section 11-5, see especially the papers by Landouceur HD and Jordan AK, and by Jaggard DL and Kim Y.)

    Google Scholar 

  • Another important inversion problem arises in the extraction of the electron density as a function of height from the measured times of travel of nearly monochromatic radio pulses which are reflected from the ionosphere. The problem reduces to that of solving Abel’s integral equation, and is related to several inverse problems in mechanics (Keller 1976, quoted above). The ionospheric case is considered in detail by

    Google Scholar 

  • Budden KG (1961) Radio waves in the ionosphere. Cambridge University Press, Cambridge (Chapter 10)

    Google Scholar 

  • Budden KG (1985) The propagation of radio waves. Cambridge University Press, Cambridge (Chapter 12)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lekner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lekner, J. (2016). Inverse Problems. In: Theory of Reflection. Springer Series on Atomic, Optical, and Plasma Physics, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-23627-8_11

Download citation

Publish with us

Policies and ethics