Advertisement

Counting Problems That Involve Symmetry

  • Anthony Mendes
  • Jeffrey Remmel
Chapter
  • 1.1k Downloads
Part of the Developments in Mathematics book series (DEVM, volume 43)

Abstract

Symmetric functions are used to prove Pólya’s enumeration theorem, allowing us to count objects modulo symmetries.

Keywords

Transition Matrix Symmetric Function Young Diagram Counting Problem Cycle Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 24.
    Chen, Y.M.: Combinatorial Algorithms for Plethysm. ProQuest LLC, Ann Arbor (1982). Thesis (Ph.D.), University of California, San DiegoGoogle Scholar
  2. 56.
    Hall, J.I., Palmer, E.M., Robinson, R.W.: Redfield’s lost paper in a modern context. J. Graph Theory 8(2), 225–240 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 57.
    Harary, F., Palmer, E.: The enumeration methods of Redfield. Am. J. Math. 89, 373–384 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 58.
    Harary, F., Robinson, R.W.: The rediscovery of Redfield’s papers. J. Graph Theory 8(2), 191–193 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 63.
    James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, New York (2001)CrossRefzbMATHGoogle Scholar
  6. 79.
    Liese, J., Remmel, J.: Q-analogues of the number of permutations with k-excedances. Pure Math. Appl. 21(2), 285–320 (2010)MathSciNetzbMATHGoogle Scholar
  7. 91.
    Mendes, A., Remmel, J.B., Riehl, A.: Permutations with k-regular descent patterns. In: Permutation Patterns. London Mathematical Society Lecture Note Series, vol. 376, pp. 259–285. Cambridge University Press, Cambridge (2010)Google Scholar
  8. 92.
    Murnaghan, F.D.: The characters of the symmetric group. Am. J. Math. 59(4), 739–753 (1937)CrossRefMathSciNetGoogle Scholar
  9. 93.
    Nakayama, T.: On some modular properties of irreducible representations of a symmetric group, I. Jpn. J. Math. 18, 89–108 (1941)Google Scholar
  10. 95.
    Niedermaier, A., Remmel, J.: Analogues of up-down permutations for colored permutations. J. Integer Seq. 13(5), Article 10.5.6, 32 (2010)Google Scholar
  11. 97.
    Ram, A., Remmel, J.B., Whitehead, T.: Combinatorics of the q-basis of symmetric functions. J. Comb. Theory Ser. A 76(2), 231–271 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 104.
    Robinson, G.d.B.: On the representations of the symmetric group. Am. J. Math. 60(3), 745–760 (1938). doi:10.2307/2371609. http://www.dx.doi.org/10.2307/2371609

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anthony Mendes
    • 1
  • Jeffrey Remmel
    • 2
  1. 1.Mathematics DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations