Counting with RSK

  • Anthony Mendes
  • Jeffrey Remmel
Part of the Developments in Mathematics book series (DEVM, volume 43)


The RSK algorithm is introduced and used to find generating functions for permutation statistics. Connections are made to increasing subsequences in permutations and words and the Schur symmetric functions. A q-analogue of the hook length formula is proved, and the Hillman-Grassl algorithm is introduced.


  1. 26.
    Désarménien, J., Foata, D.: Fonctions symétriques et séries hypergéométriques basiques multivariées. Bull. Soc. Math. Fr. 113(1), 3–22 (1985)zbMATHGoogle Scholar
  2. 27.
    Désarménien, J., Foata, D.: Fonctions symétriques et séries hypergéométriques basiques multivariées, II. In: Combinatoire énumérative, Montreal, 1985/Quebec, 1985. Lecture Notes in Mathematics, vol. 1234, pp. 68–90. Springer, Berlin (1986)Google Scholar
  3. 28.
    Désarménien, J., Foata, D.: Statistiques d’ordre sur les permutations colorées. Discret. Math. 87(2), 133–148 (1991)CrossRefzbMATHGoogle Scholar
  4. 46.
    Frame, J.S., Robinson, G.d.B., Thrall, R.M.: The hook graphs of the symmetric groups. Can. J. Math. 6, 316–324 (1954)Google Scholar
  5. 48.
    Garsia, A., Gessel, I.: Permutation statistics and partitions. Adv. Math. 31(3), 288–305 (1979)CrossRefMathSciNetGoogle Scholar
  6. 50.
    Gessel, I.: Counting permutations by descents, greater index, and cycle structure. Preprint, Department of Mathematics M.I.T., Cambridge (1977)Google Scholar
  7. 54.
    Greene, C.: An extension of Schensted’s theorem. Adv. Math. 14, 254–265 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 61.
    Hillman, A.P., Grassl, R.M.: Reverse plane partitions and tableau hook numbers. J. Comb. Theory Ser. A 21(2), 216–221 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 72.
    Kitaev, S.: Patterns in Permutations and Words. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2011) [With a foreword by Jeffrey B. Remmel]Google Scholar
  10. 98.
    Redfield, J.H.: The theory of group-reduced distributions. Am. J. Math. 49(3), 433–455 (1927)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 103.
    Riordan, J.: An Introduction to Combinatorial Analysis. Dover, Mineola (2002) (Reprint of the 1958 original [Wiley, New York; MR0096594 (20 #3077)])Google Scholar
  12. 104.
    Robinson, G.d.B.: On the representations of the symmetric group. Am. J. Math. 60(3), 745–760 (1938). doi:10.2307/2371609.
  13. 105.
    Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Graduate Texts in Mathematics, vol. 203. Springer, New York (2001)Google Scholar
  14. 106.
    Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 112.
    Touchard, J.: Sur les cycles des substitutions. Acat. Math. 70, 243–297 (1939)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anthony Mendes
    • 1
  • Jeffrey Remmel
    • 2
  1. 1.Mathematics DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations