Skip to main content

Counting with Nonstandard Bases

  • Chapter
Counting with Symmetric Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 43))

  • 1559 Accesses

Abstract

Generalizing the relationship between the elementary and power symmetric functions, we define a new basis for the ring of symmetric functions which has an expansion in terms of specially weighted brick tabloids. This allows us even more versatility when using symmetric functions in enumerating permutations and words. We show how this new basis can be used to find generating functions for various refinements of permutations and words, recurrence relations, and objects counted by the exponential formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner, M., Ziegler, G.M.: Proofs from the Book, 5th edn. Springer, Berlin (2014) [Including illustrations by Karl H. Hofmann]

    MATH  Google Scholar 

  2. Beissinger, J.S.: Factorization and enumeration of labeled combinatorial objects. Ph.D. thesis, University of Pennsylvania (1981)

    Google Scholar 

  3. Bender, E.A., Goldman, J.R.: Enumerative uses of generating functions. Indiana Univ. Math. J. 20, 753–765 (1970/1971)

    Google Scholar 

  4. Benjamin, A.T., Quinn, J.J.: Proofs That Really Count: The Art of Combinatorial Proof. The Dolciani Mathematical Expositions, vol. 27. Mathematical Association of America, Washington, DC (2003)

    Google Scholar 

  5. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures. Encyclopedia of Mathematics and Its Applications, vol. 67. Cambridge University Press, Cambridge (1998) [Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota]

    Google Scholar 

  6. Carlitz, L.: Permutations and sequences. Adv. Math. 14, 92–120 (1974)

    Article  MATH  Google Scholar 

  7. Carlitz, L., Scoville, R.: Enumeration of permutations by rises, falls, rising maxima and falling maxima. Acta Math. Acad. Sci. Hungar. 25, 269–277 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlitz, L., Scoville, R.: Generalized Eulerian numbers: combinatorial applications. J. Reine Angew. Math. 265, 110–137 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Doubilet, P., Rota, G.C., Stanley, R.: On the foundations of combinatorial theory, VI. The idea of generating function. In: Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley, 1970/1971. Probability Theory, vol. II, pp. 267–318. University of California Press, Berkeley (1972)

    Google Scholar 

  10. Entringer, R.: Enumeration of permutations of (1, ⋯ , n) by number of maxima. Duke Math. J. 36, 575–579 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foata, D., Schützenberger, M.P.: Théorie Géométrique des Polynômes Eulériens. Lecture Notes in Mathematics, vol. 138. Springer, Berlin (1970)

    Google Scholar 

  12. Garsia, A., Joni, S.N.: Composition sequences. Commun. Algebra 8(13), 1195–1266 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gessel, I.: Generating functions and enumeration of sequences. Ph.D. thesis, Massachusetts Institute of Technology (1977)

    Google Scholar 

  14. Henle, M.: Dissection of generating functions. Stud. Appl. Math. 51, 397–410 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacobi, C.G.: Zur combinatorischen analysis. J. Reine Angew. Math. 22, 372–374 (1841)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones, M.E., Remmel, J.B.: A reciprocity method for computing generating functions over the set of permutations with no consecutive occurrence of a permutation pattern. Discret. Math. 313(23), 2712–2729 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langley, T.: Alternate transition matrices for Brenti’s q-symmetric functions and a class of (q, t)-symmetric functions on the hyperoctahedral group. In: Proceedings of Formal Power Series and Algebraic Combinatorics (FPSAC), Melbourne (2002)

    Google Scholar 

  18. Mansour, T., West, J.: Avoiding 2-letter signed patterns. Sém. Lothar. Comb. 49, Art. B49a, 11 (2002/2004)

    Google Scholar 

  19. Mendes, A., Remmel, J.: Descents, inversions, and major indices in permutation groups. Discret. Math. 308(12), 2509–2524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Remmel, J.B.: Consecutive up-down patterns in up-down permutations. Electron. J. Comb. 21(3), Paper 3.2, 35 (2014)

    Google Scholar 

  21. Sylvester, J.J.: Note on the numbers of Bernoulli and Euler and a new theorem concerning prime numbers. In: The Collected Mathematical Papers of James Joseph Sylvester, vol. 2. Chelsea, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mendes, A., Remmel, J. (2015). Counting with Nonstandard Bases. In: Counting with Symmetric Functions. Developments in Mathematics, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-23618-6_4

Download citation

Publish with us

Policies and ethics