Skip to main content

Broadcast Channels with Confidential Messages: Channel Uncertainty, Robustness, and Continuity

  • Conference paper
  • First Online:
Physical and Data-Link Security Techniques for Future Communication Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 358))

  • 800 Accesses

Abstract

The broadcast channel with confidential messages (BCC) models the communication scenario in which a transmitter sends simultaneously common and confidential information to two receivers. The common information must be received by both receivers while the confidential information is designated for one receiver only and must be secured against the other one. The performance of this system is usually characterized by its secrecy capacity region determining the maximum transmission rates. In this chapter, the issue of whether this secrecy capacity region depends continuously on the system parameters or not is examined. In particular, this is done for compound channels, in which the users know only that the true channel realization is constant for the whole duration of transmission and this comes from a pre-specified uncertainty set. The secrecy capacity region of the compound BCC is shown to be robust in the sense that it is a continuous function of the uncertainty set. This means that small variations in the uncertainty set result in small variations in secrecy capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the distance can also be defined based on another norm. This follows from the fact that the output alphabets \(\mathscr {Y}\) and \(\mathscr {Z}\) are finite. A norm other than the total variation distance would only result in slightly different constants.

References

  1. Ahlswede R (1978) Elimination of correlation in random codes for arbitrarily varying channels. Z Wahrscheinlichkeitstheorie verw Gebiete 44:159–175

    Article  MATH  MathSciNet  Google Scholar 

  2. Alicki R, Fannes M (2004) Continuity of quantum conditional information. J Phys A: Math Gen 37(5):L55–L57

    Article  MATH  MathSciNet  Google Scholar 

  3. Bjelaković I, Boche H, Sommerfeld J (2013) Capacity results for arbitrarily varying wiretap channels. Information theory, combinatorics, and search theory. Springer, Berlin, pp 123–144

    Chapter  Google Scholar 

  4. Bjelaković I, Boche H, Sommerfeld J (2013) Secrecy results for compound wiretap channels. Prob Inf Trans 49(1):73–98

    Article  MATH  Google Scholar 

  5. Blackwell D, Breiman L, Thomasian AJ (1959) The capacity of a class of channels. Ann Math Stat 30(4):1229–1241

    Article  MATH  MathSciNet  Google Scholar 

  6. Blackwell D, Breiman L, Thomasian AJ (1960) The capacities of certain channel classes under random coding. Ann Math Stat 31(3):558–567

    Article  MATH  MathSciNet  Google Scholar 

  7. Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Boche H, Schaefer RF (2013) Capacity results and super-activation for wiretap channels with active wiretappers. IEEE Trans Inf Forensics Secur 8(9):1482–1496

    Article  Google Scholar 

  9. Boche H, Schaefer RF (2014) Arbitrarily varying wiretap channels with finite coordination resources. In Proceedings of IEEE international conference on communication workshops, Sydney, Australia, pp 746–751

    Google Scholar 

  10. Boche H, Schaefer RF, Poor HV (2014) On the continuity of the secrecy capacity of compound and arbitrarily varying wiretap channels. IEEE Trans Inf Forensics Secur. http://arxiv.org/abs/1409.4752

  11. Boche H, Schaefer RF, Poor HV (2015) On the continuity of the secrecy capacity of wiretap channels under channel uncertainty. In: Proceedings of IEEE international conference on communication, London, UK, June 2015

    Google Scholar 

  12. Boche H, Schaefer RF, Poor HV (2014) On arbitrarily varying wiretap channels for different classes of secrecy measures. In: Proceedings of IEEE international symposium on information theory, Honolulu, pp 2376–2380

    Google Scholar 

  13. Csiszár I (1996) Almost independence and secrecy capacity. Probl Pered Inf 32(1):48–57

    Google Scholar 

  14. Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans inf theory 24(3):339–348

    Article  MATH  Google Scholar 

  15. Csiszár I, Narayan P (1988) The capacity of the arbitrarily varying channel revisited: positivity, constraints. IEEE Trans Inf Theory 34(2):181–193

    Article  MATH  Google Scholar 

  16. Deutsche Telekom AG Laboratories (2010) Next generation mobile networks: (r)evolution in mobile communications. Technology Radar Edition III/2010, Feature Paper

    Google Scholar 

  17. Ekrem E, Ulukus S (2010) On Gaussian MIMO compound wiretap channels. In: Proceedings of the conference on information sciences and systems, Baltimore, pp 1–6

    Google Scholar 

  18. Fettweis G, Boche H, Wiegand T et al (2014) The tactile internet. Technical report, ITU-T Technology Watch reports. http://www.itu.int/oth/T2301000023/en

  19. Grigorescu A (2015) Robust biometric authentication and secure message transmission. Master’s thesis, Technische Universität München, Munich, Germany

    Google Scholar 

  20. Grigorescu A, Boche H, Schaefer RF, Poor HV (2015) Capacity region continuity of the compound broadcast channel with confidential messages. In: Proceedings of IEEE conference on information theory workshop, Jerusalem, Israel

    Google Scholar 

  21. Helmbrecht U, Plaga R (2008) New challenges for IT-security research in ICT. In: World federation of scientists international seminars on planetary emergencies, Erice, Italy, pp 1–6

    Google Scholar 

  22. Jorswieck EA, Wolf A, Gerbracht S (2010) Secrecy on the physical layer in wireless networks. Trends in Telecommunications Technologies, pp 413–435

    Google Scholar 

  23. Khisti A (2011) Interference alignment for the multiantenna compound wiretap channel. IEEE Trans Inf Theory 57(5):2976–2993

    Article  MathSciNet  Google Scholar 

  24. Kobayashi M, Liang Y, Shamai (Shitz) S, Debbah M (2009) On the compound MIMO broadcast channels with confidential messages. In: Proceedings of IEEE international symposium on information theory, Seoul, Korea, pp 1283–1287

    Google Scholar 

  25. Leung D, Smith G (2009) Continuity of quantum channel capacities. Commun Math Phys 292(1):201–215

    Article  MATH  MathSciNet  Google Scholar 

  26. Liang Y, Kramer G, Poor HV, Shamai (Shitz) S (2009) Compound wiretap channels. EURASIP J Wireless Commun 142374:1–13

    Google Scholar 

  27. Liang Y, Poor HV, Shamai (Shitz) S (2009) Information theoretic security. Found Trends Commun Inf Theory 5(4–5):355–580

    Google Scholar 

  28. Liu R, Trappe W (eds) (2010) Securing wireless communications at the physical layer. Springer, Berlin

    Google Scholar 

  29. Maurer UM, Wolf S (2000) Information-theoretic key agreement: from weak to strong secrecy for free. In: EUROCRYPT 2000. Lecture Notes in Computer Science, vol 1807, Springer, Berlin, pp 351–368

    Google Scholar 

  30. MolavianJazi E, Bloch M, Laneman JN (2009) Arbitrary jamming can preclude secure communication. In: Proceedings of the 47th annual Allerton conference on communication, control, computing, Monticello, IL, pp 1069–1075

    Google Scholar 

  31. Nötzel J, Wiese M, Boche H (2015) The arbitrarily varying wiretapchannel—secret randomness, stability and super-activation. IEEE Trans Inf Theory. http://arxiv.org/abs/1501.07439

  32. Schaefer RF, Boche H (2014a) Physical layer service integration in wireless networks—signal processing challenges. IEEE Signal Process Mag 31(3):147–156

    Article  Google Scholar 

  33. Schaefer RF, Boche H (2014b) Robust broadcasting of common and confidential messages over compound channels: strong secrecy and decoding performance. IEEE Trans Inf Forensics Secur 9(10):1720–1732

    Article  Google Scholar 

  34. Schaefer RF, Loyka S (2013) The secrecy capacity of a compound MIMO gaussian channel. In: Proceedings of IEEE conference information theory workshop, Seville, Spain, pp 104–108

    Google Scholar 

  35. Schaefer RF, Loyka S (2014) The compound secrecy capacity of a class of non-degraded MIMO gaussian channels. In: Proceedings of the 52nd annual allerton conference on communication, control, and computing, Monticello, pp. 1004–1010

    Google Scholar 

  36. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715

    Article  MATH  MathSciNet  Google Scholar 

  37. Wiese M, Nötzel J, Boche H (2014) The arbitrarily varying wiretap channel-deterministic and correlated random coding capacities under the strong secrecy criterion. IEEE Trans Inf Theory. http://arxiv.org/abs/1410.8078

  38. Wolfowitz J (1960) Simultaneous channels. Arch Rational Mech Anal 4(4):371–386

    MATH  MathSciNet  Google Scholar 

  39. Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54:1355–1387

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhou X, Song L, Zhang Y (eds) (2013) Physical layer security in wireless communications. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work of R. F. Schaefer was supported by the German Research Foundation (DFG) under Grant WY 151/2-1. This work of A. Grigorescu was supported by the German Research Foundation (DF) under Grant BO 1734/20-1. This work of H. Boche was supported by the German Ministry of Education and Research (BMBF) under Grants 01BQ1050 and 16KIS0118. This work of H. V. Poor was supported by the U.S. National Science Foundation under Grant CMMI-1435778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael F. Schaefer .

Editor information

Editors and Affiliations

Appendix

Appendix

The following proofs of Lemmas 5.1 and 5.2 are adaptations of [2] and [25] where similar results were proved in the context of quantum information theory. However, we obtain bounds with better constants by restricting the analysis to classical probability distributions only.

5.1.1 Proof of Lemma 5.1

\(\square \)The proof of this lemma can also be found in [10, 11] and is given here for completeness. It follows [2] where a similar result is presented in the context of quantum information. However, we are able to get a better constant by using the fact that \(H(Y|X)\ge 0\) for all \(P_{XY}\in \mathscr {P}(\mathscr {X}\times \mathscr {Y})\). This is in contrast to the quantum version in [2].

Let \(P_{XY},P_{\tilde{X}\tilde{Y}}\in \mathscr {P}(\mathscr {X}\times \mathscr {Y})\) be joint probability distributions with \(\Vert P_{XY}-P_{\tilde{X}\tilde{Y}}\Vert \le \varepsilon \). We assume that

$$\begin{aligned} \sum _{x\in \mathscr {X}}\sum _{y\in \mathscr {Y}}\big |P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y)\big |=\varepsilon \end{aligned}$$
(5.19)

is satisfied with equality since otherwise \(\varepsilon \) in (5.19) could be replaced with a smaller \(\tilde{\varepsilon }<\varepsilon \) accordingly.

We define the function

$$\begin{aligned} f(x,y) =:\big |P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y)\big | \end{aligned}$$
(5.20)

and set

$$\begin{aligned} p^*(x,y) = (1-\varepsilon )P_{XY}(x,y)+f(x,y) \end{aligned}$$

for all \((x,y)\in \mathscr {X}\times \mathscr {Y}\) so that \(p^*\in \mathscr {P}(\mathscr {X},\mathscr {Y})\) is a joint probability distribution on \(\mathscr {X}\times \mathscr {Y}\).

Further, we set

$$\begin{aligned} \hat{p}(x,y) = \frac{1}{\varepsilon }f(x,y), \end{aligned}$$
(5.21a)

and

$$\begin{aligned} \hat{q}(x,y) = \frac{1}{\varepsilon }\big ((1-\varepsilon )\big [P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y)\big ]+f(x,y)\big ). \end{aligned}$$
(5.21b)

Next we check that \(\hat{p}\) and \(\hat{q}\) are well defined such that they are indeed probability distributions. \(\hat{p}(x,y)\ge 0\) for all \((x,y)\in \mathscr {X}\times \mathscr {Y}\) is obviously true. It remains to verify that \(\hat{q}(x,y)\ge 0\) for all \((x,y)\in \mathscr {X}\times \mathscr {Y}\) is also satisfied.

If \(P_{XY}(x,y)\le P_{\tilde{X}\tilde{Y}}(x,y)\), then

$$\begin{aligned} -f(x,y)&\le P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y) \\&\le (1-\varepsilon )\big (P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y)\big ) \\&\le 0 \end{aligned}$$

so that \(\hat{q}(x,y)\ge 0\). On the other hand, if \(P_{XY}(x,y)>P_{\tilde{X}\tilde{Y}}(x,y)\), then

$$\begin{aligned} 0&<(1-\varepsilon )\big (P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y)\big ) \\&\le P_{XY}(x,y)-P_{\tilde{X}\tilde{Y}}(x,y) \\&\le f(x,y) \end{aligned}$$

so that \(\hat{q}(x,y)\ge 0\) also in this case. From the definition of \(\hat{p}\) and \(\hat{q}\) in (5.21) and (5.19)–(5.20) it can further easily be verified that

$$\begin{aligned} \sum _{x\in \mathscr {X}}\sum _{y\in \mathscr {Y}}\hat{p}(x,y)= \sum _{x\in \mathscr {X}}\sum _{y\in \mathscr {Y}}\hat{q}(x,y)=1 \end{aligned}$$

which shows that \(\hat{p}\in \mathscr {P}(\mathscr {X}\times \mathscr {Y})\) and \(\hat{q}\in \mathscr {P}(\mathscr {X}\times \mathscr {Y})\) are joint probability distributions.

With this we can rewrite \(p^*\) as

$$\begin{aligned} p^*(x,y)&= (1-\varepsilon )P_{XY}(x,y) + \varepsilon \hat{p}(x,y) \end{aligned}$$
(5.22a)
$$\begin{aligned}&= (1-\varepsilon )P_{\tilde{X}\tilde{Y}}(x,y) + \varepsilon \hat{q}(x,y) \end{aligned}$$
(5.22b)

for all \((x,y)\in \mathscr {X}\times \mathscr {Y}\). Next, we show that (5.22a) implies

$$\begin{aligned} \big |H(Y|X)-H(Y^*|X^*)\big | \le \varepsilon \log |\mathscr {Y}|+H_2(\varepsilon ). \end{aligned}$$
(5.23)

To do so, we use the fact that the conditional entropy is concave, i.e.,

$$\begin{aligned} H(Y^*|X^*) \ge (1-\varepsilon )H(Y|X) + \varepsilon H(\hat{Y}|\hat{X}). \end{aligned}$$

With this, we have

$$\begin{aligned} H(Y|X) - H(Y^*|X^*)&\le H(Y|X) - (1-\varepsilon )H(Y|X) - \varepsilon H(\hat{Y}|\hat{X}) \nonumber \\&= \varepsilon \big (H(Y|X)-H(\hat{Y}|\hat{X})\big ) \nonumber \\&\le \varepsilon H(Y|X) \nonumber \\&\le \varepsilon \log |\mathscr {Y}|. \end{aligned}$$
(5.24)

Using the concavity of the entropy

$$\begin{aligned} H(X^*) \ge (1-\varepsilon )H(X) + \varepsilon H(\hat{X}) \end{aligned}$$

and the upper bound on the joint entropy

$$\begin{aligned} H(X^*,Y^*) \le (1-\varepsilon )H(X,Y)+\varepsilon H(\hat{X},\hat{Y})+ H_2(\varepsilon ), \end{aligned}$$

we get

$$\begin{aligned} H(Y^*|X^*)&= H(X^*,Y^*) - H(X^*) \\&\le (1-\varepsilon )H(Y|X) + \varepsilon H(Y^*|X^*) + H_2(\varepsilon ) \end{aligned}$$

and further

$$\begin{aligned} H(Y|X) - H(Y^*|X^*)&\ge -\varepsilon \big (H(Y^*|X^*) - H(Y|X)\big ) - H_2(\varepsilon ) \nonumber \\&\ge -\varepsilon H(Y^*|X^*) - H_2(\varepsilon ) \nonumber \\&\ge -\varepsilon \log |\mathscr {Y}| - H_2(\varepsilon ). \end{aligned}$$
(5.25)

Now, (5.24) and (5.25) yield

$$\begin{aligned} \big |H(Y|X) - H(Y^*|X^*)\big | \le \varepsilon \log |\mathscr {Y}| + H_2(\varepsilon ) \end{aligned}$$

which shows (5.23). (By the same arguments, one can show that (5.22b) implies \(|H(\tilde{Y}|\tilde{X})-H(Y^*|X^*)| \le \varepsilon \log |\mathscr {Y}|+H_2(\varepsilon )\).)

Finally, this yields

$$\begin{aligned}&\big |H(Y|X)-H(\tilde{Y}|\tilde{X})\big | \\&\qquad \qquad = \big |H(Y|X)-H(Y^*|X^*) + \big (H(Y^*|X^*)-H(\tilde{Y}|\tilde{X})\big )\big | \\&\qquad \qquad \le \big |H(Y|X)-H(Y^*|X^*)\big | + \big |H(\tilde{Y}|\tilde{X})-H(Y^*|X^*)\big | \\&\qquad \qquad \le 2\varepsilon \log |\mathscr {Y}| + 2H_2(\varepsilon ) \end{aligned}$$

which is (5.6), proving the lemma. \(\square \)

5.1.2 Proof of Lemma 5.2

\(\square \)The proof presented in the following is based on [10, Lemma 2]. Let \(0\le k\le n\) be arbitrary. We define

$$\begin{aligned} P_{UVY_1^k\tilde{Y}_{k+1}^n}(u,v,y^k_1,{y}^n_{k+1})=:\sum _{x^n\in \mathscr {X}^n}\prod _{l=1}^k W(y_l|x_l)\prod _{l=k+1}^n \widetilde{W}(y_l|x_l)E(x^n|v)P_{V|U}(v|u)P_{U}(u). \end{aligned}$$

So we have

$$\begin{aligned} I(V;Y^n|U)-I(V;\tilde{Y}^n|U)=\sum _{k=0}^{n-1}\Big (I(V;Y_1^{k+1}\tilde{Y}_{k+2}^n|U)-I(V;Y^k_1\tilde{Y}_{k+1}^n|U)\Big ). \end{aligned}$$

For all \(0\le k\le n-1\) it holds that

$$\begin{aligned}&I(V;Y^{k+1}_1\tilde{Y}_{k+2}^n|U)-I(V;Y^k_1\tilde{Y}_{k+1}^n|U) \nonumber \\&\qquad = I(V;Y^k_1|U)+I(V;Y_{k+1}\tilde{Y}_{k+2}^n|Y^k_1U)-I(V;Y^k_1|U)-I(V;\tilde{Y}_{k+1}^n|Y^k_1U)\nonumber \\&\qquad = I(V;Y_{k+1}\tilde{Y}_{k+2}^n|Y^k_1U)-I(V;\tilde{Y}_{k+1}^n|Y^k_1U)\nonumber \\&\qquad = I(V;\tilde{Y}_{k+2}^n|Y^k_1U)+I(V;Y_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\nonumber \\&\qquad \qquad \qquad -I(V;\tilde{Y}_{k+2}^n|Y^k_1U)-I(V;\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\nonumber \\&\qquad = I(V;Y_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)-I(V;\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\nonumber \\&\qquad =H(Y_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)-H(\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\nonumber \\&\qquad \qquad \qquad -H(VY_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)+H(V\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U). \end{aligned}$$
(5.26)

We want to analyze the right-hand side of (5.26). For \(0\le k\le n-1\), it holds that

$$\begin{aligned}&\Vert P_{UVY^{k+1}_1\tilde{Y}^{n}_{k+2}}-P_{UVY^{k}_1\tilde{Y}^{n}_{k+1}}\Vert \\&\qquad =\sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{y^n\in \mathscr {Y}^n}\Big |P_{UVY^{k+1}_1\tilde{Y}^{n}_{k+2}}(u,v,y^{k+1}_1y^{n}_{k+2})-P_{UVY^{k}_1\tilde{Y}^{n}_{k+1}}(u,v,y^{k}_1y^{n}_{k+1})\Big |\\&\qquad =\sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{y^n\in \mathscr {Y}^n}\Big |\sum _{x^n\in \mathscr {X}^n}\Big (\prod _{l=1}^{k+1} W(y_l|x_l)\prod _{l=k+2}^n \widetilde{W}(y_l|x_l)\\&\qquad \qquad \qquad -\prod _{l=1}^{k+1} W(y_l|x_l)\prod _{l=k+2}^n \widetilde{W}(y_l|x_l)\Big )E(x^n|v)P_{V|U}(v|u)P_{U}(u)\Big |\\&\qquad =\sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{y^n\in \mathscr {Y}^n}\Big |\sum _{x^n\in \mathscr {X}^n}\prod _{l=1}^{k} W(y_l|x_l)\prod _{l=k+2}^n \widetilde{W}(y_l|x_l)\Big (W(y_{k+1}|x_{k+1})\\&\qquad \qquad \qquad -\widetilde{W}(y_{k+1}|x_{k+1})\Big )E(x^n|v)P_{V|U}(v|u)P_{U}(u)\Big |\\&\qquad \le \sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{y^n\in \mathscr {Y}^n}\sum _{x^n\in \mathscr {X}^n}\prod _{l=1}^{k} W(y_l|x_l)\prod _{l=k+2}^n \widetilde{W}(y_l|x_l)\Big |W(y_{k+1}|x_{k+1})\\&\qquad \qquad \qquad -\widetilde{W}(y_{k+1}|x_{k+1})\Big |E(x^n|v)P_{V|U}(v|u)P_{U}(u)\\&\qquad =\sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{x^n\in \mathscr {X}^n}\Big (\sum _{y^n\in \mathscr {Y}^n}\prod _{l=1}^{k} W(y_l|x_l)\prod _{l=k+2}^n \widetilde{W}(y_l|x_l)\Big |W(y_{k+1}|x_{k+1})\\&\qquad \qquad \qquad -\widetilde{W}(y_{k+1}|x_{k+1})\Big |\Big )E(x^n|v)P_{V|U}(v|u)P_{U}(u)\\&\qquad =\sum _{u\in \mathscr {U}}\sum _{x^n\in \mathscr {X}^n}\sum _{y_{k+1}\in \mathscr {Y}}\Big |W(y_{k+1}|x_{k+1})\\&\qquad \qquad \qquad -\widetilde{W}(y_{k+1}|x_{k+1})\Big |E(x^n|v)P_{V|U}(v|u)P_{U}(u)\\&\qquad <\varepsilon \sum _{v\in \mathscr {V}}\sum _{u\in \mathscr {U}}\sum _{x^n\in \mathscr {X}^n}E(x^n|v)P_{V|U}(v|u)P_{U}(u)=\varepsilon . \end{aligned}$$

This shows that the total variation between the joint probability distribution \(P_{\textit{UVY}^k\tilde{Y}_{k+1}^n}\) and \(P_{UVY^{k+1}\tilde{Y}_{k+2}^n}\) is smaller than \(\varepsilon \). Then by Lemma 5.1 it holds that

$$\begin{aligned} \Big |H(Y_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)-H(\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\Big |<2\varepsilon \log |\mathscr {Y}|+2H_2(\varepsilon ) \end{aligned}$$
(5.27)

and

$$\begin{aligned}&\Big |H(VY_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)-H(V\tilde{Y}_{k+1}|\tilde{Y}_{k+2}^nY^k_1U)\Big |\nonumber \\&\qquad =\Big |H(V|\tilde{Y}_{k+2}^nY^k_1U)+H(Y_{k+1}|V\tilde{Y}_{k+2}^nY^k_1U) \nonumber \\&\qquad \qquad \qquad -H(V|\tilde{Y}_{k+2}^nY^k_1U)-H(\tilde{Y}_{k+1}|V\tilde{Y}_{k+2}^nY^k_1U)\Big | \nonumber \\&\qquad =\Big |H(Y_{k+1}|V\tilde{Y}_{k+2}^nY^k_1U)-H(\tilde{Y}_{k+1}|V\tilde{Y}_{k+2}^nY^k_1U)\Big |\nonumber \\&\qquad <2\varepsilon \log |\mathscr {Y}|+2H_2(\varepsilon ). \end{aligned}$$
(5.28)

Inserting (5.27) and (5.28) into (5.26) we obtain

$$\begin{aligned} \Big |I(V;Y^{k+1}_1\tilde{Y}_{k+2}^n|U)-I(V;Y^k_1\tilde{Y}_{k+1}^n|U)\Big |\le 4\varepsilon \log |\mathscr {Y}|+4H_2(\varepsilon ):=\delta _2(\varepsilon ,|\mathscr {Y}|). \end{aligned}$$
(5.29)

This gives in particular the following upper bound for the difference between \(I(V;Y^n|U)\) and \(I(V;\tilde{Y}^n|U)\):

$$\begin{aligned} \Big |I(V;Y^n|U)-I(V;\tilde{Y}^n|U)\Big |&\le \sum _{k=0}^{n-1}\Big |I(V;Y_1^{k+1}\tilde{Y}_{k+2}^n|U)-I(V;Y^k_1\tilde{Y}_{k+1}^n|U)\Big |\\&\le n\delta _2(\varepsilon ,|\mathscr {Y}|) \end{aligned}$$

proving the lemma. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schaefer, R.F., Grigorescu, A., Boche, H., Poor, H.V. (2016). Broadcast Channels with Confidential Messages: Channel Uncertainty, Robustness, and Continuity. In: Baldi, M., Tomasin, S. (eds) Physical and Data-Link Security Techniques for Future Communication Systems. Lecture Notes in Electrical Engineering, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-23609-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23609-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23608-7

  • Online ISBN: 978-3-319-23609-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics