Skip to main content

Secure Communication in Wiretap Channels with Partial and Statistical CSI at the Transmitter

  • Conference paper
  • First Online:
Physical and Data-Link Security Techniques for Future Communication Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 358))

Abstract

One major challenge in physical layer security for confidential communication is the lack of channel state information at the transmitter about the channel to the passive eavesdropper. Depending on the attacker and channel assumptions, the statistical or deterministic channel uncertainty model is applied. The chapter reviews recent results for both uncertainty models and compares different signaling and pre-coding schemes and their achievable average and outage secrecy rates in fast and slow-fading wiretap channels. In addition to wiretap coding, artificial noise and non-Gaussian layered signaling are necessary to guarantee non-zero secrecy rates in scenarios where Gaussian wiretap codebooks do not work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Venn diagram in the conference version [13] is not correct in the sense that the set of cx should not be included in \(\mathscr {S_{D^+}}\).

References

  1. Avestimehr A, Diggavi S, Tse D (2011) Wireless network information flow: a deterministic approach. IEEE Trans Inf Theory 57(4):1872–1905. doi:10.1109/TIT.2011.2110110

    Article  MathSciNet  Google Scholar 

  2. Barros J, Rodrigues M (2006) Secrecy capacity of wireless channels. In: IEEE International symposium on information theory, pp 356–360. doi:10.1109/ISIT.2006.261613

  3. Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, Cambridge

    Google Scholar 

  4. Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24:339–348

    Article  MATH  Google Scholar 

  5. Ekrem E, Ulukus S (2009) Ergodic secrecy capacity region of the fading broadcast channel. In: IEEE international conference on communications. ICC ’09, pp 1–5. doi:10.1109/ICC.2009.5199000

  6. Gerbracht S, Scheunert C, Jorswieck E (2012) Secrecy outage in MISO systems wih partial channel information. IEEE Trans Inf Forensics Secur 7(2):704–716

    Article  Google Scholar 

  7. Gopala PK, Lai L, Gamal HE (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698. doi:10.1109/TIT.2008.928990

    Article  MATH  Google Scholar 

  8. Gungor O, Tan J, Koksal C, El-Gamal H, Shroff N (2013) Secrecy outage capacity of fading channels. IEEE Trans Inf Theory 59(9):5379–5397. doi:10.1109/TIT.2013.2265691

    Article  MathSciNet  Google Scholar 

  9. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas—part II: the mimome wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532. doi:10.1109/TIT.2010.2068852

    Article  MathSciNet  Google Scholar 

  10. Leung-Yan-Cheong S, Hellman M (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456. doi:10.1109/TIT.1978.1055917

    Article  MATH  MathSciNet  Google Scholar 

  11. Li Z, Yates R, Trappe W (2010) Achieving secret communication for fast Rayleigh fading channels. IEEE Trans Wirel Commun 9(9):2792–2799. doi:10.1109/TWC.2010.080210.090948

    Article  Google Scholar 

  12. Poor HV, Shamai (Shitz) S (2009) Information theoretic security. Found Trends Commun Inf Theory 5(4–5):355–580

    Google Scholar 

  13. Lin PH, Jorswieck E (2014) On the fading gaussian wiretap channel with statistical channel state information at transmitter. In: 2014 IEEE conference on communications and network security (CNS), pp 121–126. doi:10.1109/CNS.2014.6997476

  14. Lin PH, Jorswieck EA (subm. Dec. 2014) On the fast fading Gaussian wiretap channel with statistical channel state information at transmitter. IEEE Trans Inf Forensics Secur

    Google Scholar 

  15. Lin S, Lin CL (2014) On secrecy capacity of fast fading MIMOME wiretap channels with statistical CSIT. IEEE Trans Wirel Commun 13(6):3293–3306. doi:10.1109/TWC.2014.041714.11654

    Article  Google Scholar 

  16. Lin SC, Lin PH (2013) On secrecy capacity of fast fading multiple-input wiretap channels with statistical CSIT. IEEE Trans Inf Forensics Secur 8(2):414–419. doi:10.1109/TIFS.2012.2233735

    Article  Google Scholar 

  17. Mukherjee P, Ulukus S (2013) Fading wiretap channel with no csi anywhere. In: 2013 IEEE international symposium on information theory proceedings (ISIT), pp 1347–1351. doi:10.1109/ISIT.2013.6620446

  18. Negi R, Goel S (2005) Secret communication using artificial noise. In: Proceedings of the IEEE vehicular technology conference (VTC), vol 3, pp 1906–1910. doi:10.1109/VETECF.2005.1558439

  19. Schaefer RF, Boche H, Poor HV (2015) Secure communication under channel uncertainty and adversial attacks. In: Proceedings of IEEE submitted

    Google Scholar 

  20. Shafiee S, Ulukus S (2007) Achievable rates in Gaussian MISO channels with secrecy constraints. In: IEEE international symposium on information theory, ISIT 2007, pp 2466–2470. doi:10.1109/ISIT.2007.4557589

  21. Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Sion M (1958) On general minimax theorems. Pac J Math 8(1):171–176

    Article  MATH  MathSciNet  Google Scholar 

  23. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press

    Google Scholar 

  24. Tse D, Yates R (2012) Fading broadcast channels with state information at the receivers. IEEE Trans Inf Theory 58(6):3453–3471. doi:10.1109/TIT.2012.2191471

    Article  MathSciNet  Google Scholar 

  25. Wolf A, Jorswieck EA (2010) Maximization of worst-case secrecy rates in MIMO wiretap channels. In: Proceedings of asilomar conference on signals, systems and computers

    Google Scholar 

  26. Yuksel M, Erkip E (2011) Diversity-multiplexing tradeoff for the multiple-antenna wire-tap channel. IEEE Trans Wirel Commun 10(3):762–771. doi:10.1109/TWC.2011.010411.090943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Jorswieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jorswieck, E., Lin, PH., Engelmann, S., Wolf, A. (2016). Secure Communication in Wiretap Channels with Partial and Statistical CSI at the Transmitter. In: Baldi, M., Tomasin, S. (eds) Physical and Data-Link Security Techniques for Future Communication Systems. Lecture Notes in Electrical Engineering, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-23609-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23609-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23608-7

  • Online ISBN: 978-3-319-23609-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics