Secure Communication in Wiretap Channels with Partial and Statistical CSI at the Transmitter

  • Eduard JorswieckEmail author
  • Pin-Hsun Lin
  • Sabrina Engelmann
  • Anne Wolf
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 358)


One major challenge in physical layer security for confidential communication is the lack of channel state information at the transmitter about the channel to the passive eavesdropper. Depending on the attacker and channel assumptions, the statistical or deterministic channel uncertainty model is applied. The chapter reviews recent results for both uncertainty models and compares different signaling and pre-coding schemes and their achievable average and outage secrecy rates in fast and slow-fading wiretap channels. In addition to wiretap coding, artificial noise and non-Gaussian layered signaling are necessary to guarantee non-zero secrecy rates in scenarios where Gaussian wiretap codebooks do not work.


Fading Channel Outage Probability Stochastic Order Secrecy Rate Secrecy Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avestimehr A, Diggavi S, Tse D (2011) Wireless network information flow: a deterministic approach. IEEE Trans Inf Theory 57(4):1872–1905. doi: 10.1109/TIT.2011.2110110 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barros J, Rodrigues M (2006) Secrecy capacity of wireless channels. In: IEEE International symposium on information theory, pp 356–360. doi: 10.1109/ISIT.2006.261613
  3. 3.
    Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24:339–348zbMATHCrossRefGoogle Scholar
  5. 5.
    Ekrem E, Ulukus S (2009) Ergodic secrecy capacity region of the fading broadcast channel. In: IEEE international conference on communications. ICC ’09, pp 1–5. doi: 10.1109/ICC.2009.5199000
  6. 6.
    Gerbracht S, Scheunert C, Jorswieck E (2012) Secrecy outage in MISO systems wih partial channel information. IEEE Trans Inf Forensics Secur 7(2):704–716CrossRefGoogle Scholar
  7. 7.
    Gopala PK, Lai L, Gamal HE (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698. doi: 10.1109/TIT.2008.928990 zbMATHCrossRefGoogle Scholar
  8. 8.
    Gungor O, Tan J, Koksal C, El-Gamal H, Shroff N (2013) Secrecy outage capacity of fading channels. IEEE Trans Inf Theory 59(9):5379–5397. doi: 10.1109/TIT.2013.2265691 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khisti A, Wornell GW (2010) Secure transmission with multiple antennas—part II: the mimome wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532. doi: 10.1109/TIT.2010.2068852 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leung-Yan-Cheong S, Hellman M (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456. doi: 10.1109/TIT.1978.1055917 zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Li Z, Yates R, Trappe W (2010) Achieving secret communication for fast Rayleigh fading channels. IEEE Trans Wirel Commun 9(9):2792–2799. doi: 10.1109/TWC.2010.080210.090948 CrossRefGoogle Scholar
  12. 12.
    Poor HV, Shamai (Shitz) S (2009) Information theoretic security. Found Trends Commun Inf Theory 5(4–5):355–580Google Scholar
  13. 13.
    Lin PH, Jorswieck E (2014) On the fading gaussian wiretap channel with statistical channel state information at transmitter. In: 2014 IEEE conference on communications and network security (CNS), pp 121–126. doi: 10.1109/CNS.2014.6997476
  14. 14.
    Lin PH, Jorswieck EA (subm. Dec. 2014) On the fast fading Gaussian wiretap channel with statistical channel state information at transmitter. IEEE Trans Inf Forensics SecurGoogle Scholar
  15. 15.
    Lin S, Lin CL (2014) On secrecy capacity of fast fading MIMOME wiretap channels with statistical CSIT. IEEE Trans Wirel Commun 13(6):3293–3306. doi: 10.1109/TWC.2014.041714.11654 CrossRefGoogle Scholar
  16. 16.
    Lin SC, Lin PH (2013) On secrecy capacity of fast fading multiple-input wiretap channels with statistical CSIT. IEEE Trans Inf Forensics Secur 8(2):414–419. doi: 10.1109/TIFS.2012.2233735 CrossRefGoogle Scholar
  17. 17.
    Mukherjee P, Ulukus S (2013) Fading wiretap channel with no csi anywhere. In: 2013 IEEE international symposium on information theory proceedings (ISIT), pp 1347–1351. doi: 10.1109/ISIT.2013.6620446
  18. 18.
    Negi R, Goel S (2005) Secret communication using artificial noise. In: Proceedings of the IEEE vehicular technology conference (VTC), vol 3, pp 1906–1910. doi: 10.1109/VETECF.2005.1558439
  19. 19.
    Schaefer RF, Boche H, Poor HV (2015) Secure communication under channel uncertainty and adversial attacks. In: Proceedings of IEEE submittedGoogle Scholar
  20. 20.
    Shafiee S, Ulukus S (2007) Achievable rates in Gaussian MISO channels with secrecy constraints. In: IEEE international symposium on information theory, ISIT 2007, pp 2466–2470. doi: 10.1109/ISIT.2007.4557589
  21. 21.
    Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, BerlinzbMATHCrossRefGoogle Scholar
  22. 22.
    Sion M (1958) On general minimax theorems. Pac J Math 8(1):171–176zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University PressGoogle Scholar
  24. 24.
    Tse D, Yates R (2012) Fading broadcast channels with state information at the receivers. IEEE Trans Inf Theory 58(6):3453–3471. doi: 10.1109/TIT.2012.2191471 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wolf A, Jorswieck EA (2010) Maximization of worst-case secrecy rates in MIMO wiretap channels. In: Proceedings of asilomar conference on signals, systems and computersGoogle Scholar
  26. 26.
    Yuksel M, Erkip E (2011) Diversity-multiplexing tradeoff for the multiple-antenna wire-tap channel. IEEE Trans Wirel Commun 10(3):762–771. doi: 10.1109/TWC.2011.010411.090943 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eduard Jorswieck
    • 1
    Email author
  • Pin-Hsun Lin
    • 1
  • Sabrina Engelmann
    • 1
  • Anne Wolf
    • 1
  1. 1.TU Dresden, Communications TheoryDresdenGermany

Personalised recommendations