Skip to main content

Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation

  • Chapter
Prokaryotic Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 883))

Abstract

Protein folding and structure have been of interest since the dawn of protein chemistry. Following translation from the ribosome, a protein must go through various steps to become a functional member of the cellular society. Every protein has a unique function in the cell and is classified on this basis. Proteins that are involved in cellular respiration are the bioenergetic workhorses of the cell. Bacteria are resilient organisms that can survive in diverse environments by fine tuning these workhorses. One class of proteins that allow survival under anoxic conditions are anaerobic respiratory oxidoreductases, which utilize many different compounds other than oxygen as its final electron acceptor. Dimethyl sulfoxide (DMSO) is one such compound. Respiration using DMSO as a final electron acceptor is performed by DMSO reductase, converting it to dimethyl sulfide in the process. Microbial respiration using DMSO is reviewed in detail by McCrindle et al. (Adv Microb Physiol 50:147–198, 2005). In this chapter, we discuss the biogenesis of DMSO reductase as an example of the participant network for complex iron-sulfur molybdoenzyme maturation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bearson SM, Albrecht JA, Gunsalus RP (2002) Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol 2:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22(3):393–404

    Article  CAS  PubMed  Google Scholar 

  • Bilous PT, Weiner JH (1988) Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon. J Bacteriol 170(4):1511–1518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bilous PT, Cole ST, Anderson WF, Weiner JH (1988) Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol Microbiol 2(6):785–795. doi:10.1111/j.1365-2958.1988.tb00090.x

    Article  CAS  PubMed  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    Article  CAS  PubMed  Google Scholar 

  • Calloni G, Chen T, Schermann Sonya M, Chang H-c, Genevaux P, Agostini F, Tartaglia Gian G, Hayer-Hartl M, Hartl FU (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1(3):251–264

    Article  CAS  PubMed  Google Scholar 

  • Cammack R, Weiner JH (1990) Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29(36):8410–8416. doi:10.1021/bi00488a030

    Article  CAS  PubMed  Google Scholar 

  • Castanié-Cornet M-P, Bruel N, Genevaux P (2013) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843(8):1442–1456. doi:10.1016/j.bbamcr.2013.11.007

    Article  PubMed  Google Scholar 

  • Chan CS, Chang L, Rommens KL, Turner RJ (2009) Differential interactions between Tat-specific redox enzyme peptides and their chaperones. J Bacteriol 191(7):2091–2101. doi:10.1128/jb.00949-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng VWT, Rothery RA, Bertero MG, Strynadka NCJ, Weiner JH (2005) Investigation of the environment surrounding iron – sulfur cluster 4 of Escherichia coli dimethylsulfoxide reductase. Biochemistry 44(22):8068–8077. doi:10.1021/bi050362p

    Article  CAS  PubMed  Google Scholar 

  • Cotter PA, Gunsalus RP (1989) Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol 171(7):3817–3823

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100(10):6115–6120. doi:10.1073/pnas.0937838100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engelman DM, Steitz TA (1981) The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23(2):411–422

    Article  CAS  PubMed  Google Scholar 

  • Fröbel J, Rose P, Müller M (2012) Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 367(1592):1029–1046. doi:10.1098/rstb.2011.0202

    Article  PubMed Central  PubMed  Google Scholar 

  • Geijer P, Weiner JH (2004) Glutamate 87 is important for menaquinol binding in DmsC of the DMSO reductase (DmsABC) from Escherichia coli. Biochim Biophys Acta 1660(1–2):66–74. doi:10.1016/j.bbamem.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  • Genest O, Neumann M, Seduk F, Stocklein W, Mejean V, Leimkuhler S, Iobbi-Nivol C (2008) Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components. J Biol Chem 283(31):21433–21440. doi:10.1074/jbc.M802954200

    Article  CAS  PubMed  Google Scholar 

  • Genevaux P, Georgopoulos C, Kelley WL (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66(4):840–857. doi:10.1111/j.1365-2958.2007.05961.x

    Article  CAS  PubMed  Google Scholar 

  • Graubner W, Schierhorn A, Brüser T (2007) DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding Chaperone. J Biol Chem 282(10):7116–7124. doi:10.1074/jbc.M608235200

    Article  CAS  PubMed  Google Scholar 

  • Green J, Rolfe MD, Smith LJ (2014) Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 5(4). doi:10.4161/viru.27794

  • Hatzixanthis K, Richardson DJ, Sargent F (2005) Chaperones involved in assembly and export of N-oxide reductases. Biochem Soc Trans 33(Pt 1):124–126

    Article  CAS  PubMed  Google Scholar 

  • Heffron K, Léger C, Rothery RA, Weiner JH, Armstrong FA (2001) Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry 40(10):3117–3126. doi:10.1021/bi002452u

    Article  CAS  PubMed  Google Scholar 

  • Hille R (2013) The molybdenum oxotransferases and related enzymes. Dalton Trans 42(9):3029–3042. doi:10.1039/C2DT32376A

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Merz F, Rutkowska A, Zachmann-Brand B, Deuerling E, Bukau B (2006) Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J Biol Chem 281(10):6539–6545. doi:10.1074/jbc.M512345200

    Article  CAS  PubMed  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402(6758):147–154. doi:10.1038/45977

    Article  CAS  PubMed  Google Scholar 

  • Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C (2003) Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278(31):28787–28792

    Article  CAS  PubMed  Google Scholar 

  • Ilbert M, Mejean V, Iobbi-Nivol C (2004) Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150(Pt 4): 935–943

    Article  CAS  PubMed  Google Scholar 

  • Iobbi-Nivol C, Leimkühler S (2012) Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochim Biophys Acta 1827(8-9):1086–1101. doi:10.1016/j.bbabio.2012.11.007

    Article  PubMed  Google Scholar 

  • Jong WS, ten Hagen-Jongman CM, Genevaux P, Brunner J, Oudega B, Luirink J (2004) Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in Tat-mediated export. Eur J Biochem 271(23-24):4779–4787

    Article  CAS  PubMed  Google Scholar 

  • Kelley PM, Schlesinger MJ (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15(4):1277–1286. doi:10.1016/0092-8674(78)90053-3

    Article  CAS  PubMed  Google Scholar 

  • Kostecki JS, Li H, Turner RJ, DeLisa MP (2010) Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. PLoS One 5(2), e9225

    Article  PubMed Central  PubMed  Google Scholar 

  • Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch H-G (2013) Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 164(6):505–534. doi:10.1016/j.resmic.2013.03.016

    Article  CAS  PubMed  Google Scholar 

  • Lamberg KE, Kiley PJ (2000) FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol Microbiol 38(4):817–827. doi:10.1046/j.1365-2958.2000.02172.x

    Article  CAS  PubMed  Google Scholar 

  • Levy-Sakin M, Berger O, Feibish N, Sharon N, Schnaider L, Shmul G, Amir Y, Buzhansky L, Gazit E (2014) The influence of chemical chaperones on enzymatic activity under thermal and chemical stresses: common features and variation among diverse chemical families. PLoS One 9(2), e88541. doi:10.1371/journal.pone.0088541

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Chang L, Howell JM, Turner RJ (2010) DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. Biochim Biophys Acta 1804(6):1301–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lüke I, Butland G, Moore K, Buchanan G, Lyall V, Fairhurst S, Greenblatt J, Emili A, Palmer T, Sargent F (2008) Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein. Arch Microbiol 190(6):685–696

    Article  PubMed  Google Scholar 

  • Magalon A, Fedor JG, Walburger A, Weiner JH (2011) Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 255(9–10):1159–1178. doi:10.1016/j.ccr.2010.12.031

    Article  CAS  Google Scholar 

  • Marchenkov V, Semisotnov G (2009) GroEL-assisted protein folding: does it occur within the chaperonin inner cavity? Int J Mol Sci 10(5):2066–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matos CFRO, Robinson C, Di Cola A (2008) The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J 27(15):2055–2063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McAlpine AS, McEwan AG, Bailey S (1998) The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol 275(4):613–623

    Article  CAS  PubMed  Google Scholar 

  • McCrindle SL, Kappler U, McEwan AG (2005) Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol 50:147–198

    Article  CAS  PubMed  Google Scholar 

  • McNicholas PM, Chiang RC, Gunsalus RP (1998) Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE. Mol Microbiol 27(1):197–208. doi:10.1046/j.1365-2958.1998.00675.x

    Article  CAS  PubMed  Google Scholar 

  • Méjean V, Lobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal M-C (1994) TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11(6):1169–1179. doi:10.1111/j.1365-2958.1994.tb00393.x

    Article  PubMed  Google Scholar 

  • Mendel RR (2013) The molybdenum cofactor. J Biol Chem 288(19):13165–13172. doi:10.1074/jbc.R113.455311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oresnik IJ, Ladner CL, Turner RJ (2001) Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323–331

    Article  CAS  PubMed  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276(33):30670–30677. doi:10.1074/jbc.M104122200

    Article  CAS  PubMed  Google Scholar 

  • Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496

    CAS  PubMed  Google Scholar 

  • Palmer T, Santini C-L, Iobbi-Nivol C, Eaves DJ, Boxer DH, Giordano G (1996) Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol 20(4):875–884

    Article  CAS  PubMed  Google Scholar 

  • Papish AL, Ladner CL, Turner RJ (2003) The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278(35):32501–32506

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez R, Fisher AC, Perlmutter JD, Hicks MG, Chanal A, Santini C-L, Wu L-F, Palmer T, DeLisa MP (2007) An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 367(3):715–730. doi:10.1016/j.jmb.2007.01.027

    Article  PubMed  Google Scholar 

  • Price CE, Driessen AJM (2008) YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J Biol Chem 283(40):26921–26927. doi:10.1074/jbc.M804490200

    Article  CAS  PubMed  Google Scholar 

  • Ray N, Oates J, Turner RJ, Robinson C (2003) DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Lett 534(1-3):156–160

    Article  CAS  PubMed  Google Scholar 

  • Ribbe MW, Burgess BK (2001) The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase. Proc Natl Acad Sci U S A 98(10):5521–5525. doi:10.1073/pnas.101119498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827(3):455–469. doi:10.1016/j.bbabio.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Brenni Monica C, Hegde Ramanujan S (2012) Design principles of protein biosynthesis-coupled quality control. Dev Cell 23(5):896–907. doi:10.1016/j.devcel.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  • Rodrigue A, Batia N, Müller M, Fayet O, Böhm R, Mandrand-Berthelot MA, Wu LF (1996) Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J Bacteriol 178(15):4453–4460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romao MJ (2009) Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Dalton Trans 21:4053–4068. doi:10.1039/B821108F

    Article  PubMed  Google Scholar 

  • Rothery RA, Weiner JH (1991) Alteration of the iron-sulfur cluster composition of Escherichia coli dimethyl sulfoxide reductase by site-directed mutagenesis. Biochemistry 30(34):8296–8305. doi:10.1021/bi00098a003

    Article  CAS  PubMed  Google Scholar 

  • Rothery RA, Weiner JH (1993) Topological characterization of Escherichia coli DMSO reductase by electron paramagnetic resonance spectroscopy of an engineered [3Fe-4S] cluster. Biochemistry 32(22):5855–5861

    Article  CAS  PubMed  Google Scholar 

  • Rothery RA, Workun GJ, Weiner JH (2008) The prokaryotic complex iron–sulfur molybdoenzyme family. Biochim Biophys Acta 1778(9):1897–1929. doi:10.1016/j.bbamem.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  • Rothery RA, Stein B, Solomonson M, Kirk ML, Weiner JH (2012) Pyranopterin conformation defines the function of molybdenum and tungsten enzymes. Proc Natl Acad Sci U S A 109(37):14773–14778. doi:10.1073/pnas.1200671109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samaluru H, SaiSree L, Reddy M (2007) Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 189(22):8044–8052. doi:10.1128/jb.00773-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambasivarao D, Weiner JH (1991) Dimethyl sulfoxide reductase of Escherichia coli: an investigation of function and assembly by use of in vivo complementation. J Bacteriol 173(19):5935–5943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sambasivarao D, Scraba DG, Trieber C, Weiner JH (1990) Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli. J Bacteriol 172(10):5938–5948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sambasivarao D, Turner RJ, Simala-Grant JL, Shaw G, Hu J, Weiner JH (2000) Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 275:22526–22531. doi:10.1074/jbc.M909289199

    Article  CAS  PubMed  Google Scholar 

  • Sambasivarao D, Dawson HA, Zhang G, Shaw G, Hu J, Weiner JH (2001) Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation. J Biol Chem 276(23):20167–20174. doi:10.1074/jbc.M010369200

    Article  CAS  PubMed  Google Scholar 

  • Sambasivarao D, Turner RJ, Bilous PT, Rothery RA, Shaw G, Weiner JH (2002) Differential effects of a molybdopterin synthase sulfurylase (moeB) mutation on Escherichia coli molybdoenzyme maturation. Biochem Cell Biol 80(4):435–443

    Article  CAS  PubMed  Google Scholar 

  • Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF (1998) A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17(1):101–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17(13):3640–3650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272(5268):1615–1621. doi:10.1126/science.272.5268.1615

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Lowe J, Huber R, Schindelin H, Kisker C, Knablein J (1996) Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J Mol Biol 263(1):53–69

    Article  CAS  PubMed  Google Scholar 

  • Simala-Grant JL, Weiner JH (1996) Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142(11):3231–3239. doi:10.1099/13500872-142-11-3231

    Article  CAS  PubMed  Google Scholar 

  • Simala-Grant JL, Weiner JH (1998) Modulation of the substrate specificity of Escherichia coli dimethylsulfoxide reductase. Eur J Biochem 251(1-2):510–515. doi:10.1046/j.1432-1327.1998.2510510.x

    Article  CAS  PubMed  Google Scholar 

  • Solomon PS, Shaw AL, Lane I, Hanson GR, Palmer T, McEwan AG (1999) Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase. Microbiology 145(6):1421–1429. doi:10.1099/13500872-145-6-1421

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC (2002) Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43(4):1005–1021

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Rothery RA, Voss JE, Weiner JH (2011) Correct assembly of iron-sulfur cluster FS0 into Escherichia coli dimethyl sulfoxide reductase (DmsABC) is a prerequisite for molybdenum cofactor insertion. J Biol Chem 286(17):15147–15154. doi:10.1074/jbc.M110.213306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang H, Rothery RA, Weiner JH (2013) A variant conferring cofactor-dependent assembly of Escherichia coli dimethylsulfoxide reductase. Biochim Biophys Acta 1827(6):730–737. doi:10.1016/j.bbabio.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  • Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15(23):6363–6373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng CP, Hansen AK, Cotter P, Gunsalus RP (1994) Effect of cell growth rate on expression of the anaerobic respiratory pathway operons frdABCD, dmsABC, and narGHJI of Escherichia coli. J Bacteriol 176(21):6599–6605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) Export pathway selectivity of Escherichia coli twin-arginine translocation signal peptides. J Biol Chem 282(11), M610507200. doi:10.1074/jbc.M610507200

    Article  Google Scholar 

  • Turner RJ, Busaan JL, Lee JH, Michalak M, Weiner JH (1997) Expression and epitope tagging of the membrane anchor subunit (DmsC) of Escherichia coli dimethyl sulfoxide reductase. Protein Eng 10(3):285–290. doi:10.1093/protein/10.3.285

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Papish AL, Sargent F (2004) Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50(4):225–238

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Winstone TL, Tran VA, Chan CS (2010) System specific chaperones for membrane redox enzymes maturation in bacteria. In: Durante P, Colucci L (eds) Molecular chaperones: roles, structures and mechanisms. Nova Science Publishers Inc., New York, pp 179–207

    Google Scholar 

  • Unden G, Achebach S, Holighaus G, Tran HG, Wackwitz B, Zeuner Y (2002) Control of FNR function of Escherichia coli by O2 and reducing conditions. J Mol Microbiol Biotechnol 4(3):263–268

    CAS  PubMed  Google Scholar 

  • Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F (2009) Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5(5), e1000497. doi:10.1371/journal.pgen.1000497

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiner JH, Shaw G, Turner RJ, Trieber CA (1993) The topology of the anchor subunit of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 268(5):3238–3244

    CAS  PubMed  Google Scholar 

  • Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Winstone TL, Workentine ML, Sarfo KJ, Binding AJ, Haslam BD, Turner RJ (2006) Physical nature of signal peptide binding to DmsD. Arch Biochem Biophys 455(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Winstone TML, Tran VA, Turner RJ (2013) The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD. Biochemistry. doi:10.1021/bi4009374

    PubMed Central  PubMed  Google Scholar 

  • Wissenbach U, Kröger A, Unden G (1990) The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol 154(1):60–66. doi:10.1007/BF00249179

    Article  CAS  PubMed  Google Scholar 

  • Wissenbach U, Ternes D, Unden G (1992) An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol 158(1):68–73. doi:10.1007/BF00249068

    Article  CAS  PubMed  Google Scholar 

  • Wu L-F, Chanal A, Rodrigue A (2000) Membrane targeting and translocation of bacterial hydrogenases. Arch Microbiol 173(5):319–324

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Takai M, Satoh T, Takami S (1991) Molybdenum requirement for translocation of dimethyl sulfoxide reductase to the periplasmic space in a photodenitrifier, Rhodobacter sphaeroides f. sp. denitrificans. J Bacteriol 173(11):3277–3281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Z, Weiner JH (1998) Interaction of 2-n-heptyl-4-hydroxyquinoline-N-oxide with dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 273(33):20758–20763. doi:10.1074/jbc.273.33.20758

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chan, C.S., Turner, R.J. (2015). Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. In: Krogan, PhD, N., Babu, PhD, M. (eds) Prokaryotic Systems Biology. Advances in Experimental Medicine and Biology, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-319-23603-2_12

Download citation

Publish with us

Policies and ethics