Skip to main content

The Defining Characteristics of Pulmonary Arterial Hypertension

  • Chapter
Pulmonary Hypertension

Abstract

Pulmonary Arterial Hypertension (PAH) is a multifactorial progressive cardiopulmonary disease characterized by smooth muscle cell proliferation, hypertrophy of the vascular medial layer, arteriolar muscularization and endothelial cell proliferation. The persisting challenge in understanding the pathobiology of PAH is to define how the structural, cellular and molecular characteristics of the normal pulmonary circulation are disrupted in the disease setting. Although the exact pathophysiology remains unknown, there is increasing evidence to suggest an important role for inflammation and metabolic reprograming in the development of PAH. In this review, we highlight the known characteristic pathological features of human and experimental PAH. Additionally, we discuss how inflammatory signaling, including various chemokines, cytokines, immune cells, macrophages and TGF-β contribute to the PAH phenotype. Finally, we review emerging evidence that disordered cellular energetics and hypoxia signaling is characteristic in PAH. This chapter highlights the complexity and multiple pathobiologic disturbances that are defining characteristics of PAH.

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.

    Article  PubMed  Google Scholar 

  2. Tuder RM. How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today. 2014;19:1257–63.

    Article  PubMed  Google Scholar 

  3. Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:261–72.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB. Pathology of pulmonary hypertension. Clin Chest Med. 2013;34:639–50.

    Article  PubMed  Google Scholar 

  5. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S. Pathology of pulmonary hypertension. Clin Chest Med. 2007;28:23–42. vii.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yaginuma G, Mohri H, Takahashi T. Distribution of arterial lesions and collateral pathways in the pulmonary hypertension of congenital heart disease: a computer aided reconstruction study. Thorax. 1990;45:586–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cool CD, Stewart JS, Werahera P, et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol. 1999;155:411–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tuder RM, Chacon M, Alger L, et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol. 2001;195:367–74.

    Article  CAS  PubMed  Google Scholar 

  9. Santos S, Peinado VI, Ramirez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J. 2002;19:632–8.

    Article  CAS  PubMed  Google Scholar 

  10. Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15:427–38.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell AI, Zhao Y, Sandhu R, Stewart DJ. Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation. 2001;104:2242–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J. 2005;19:1178–80.

    CAS  PubMed  Google Scholar 

  13. Thompson K, Rabinovitch M. Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular-matrix bound basic fibroblast growth factor. J Cell Physiol. 1996;166:495–505.

    Article  CAS  PubMed  Google Scholar 

  14. Alastalo TP, Li M, Perez VJ, et al. Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest. 2011;121:3735–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Poiani GJ, Tozzi CA, Yohn SE, et al. Collagen and elastin metabolism in hypertensive pulmonary arteries of rats. Circ Res. 1990;66:968–78.

    Article  CAS  PubMed  Google Scholar 

  16. Chazova I, Loyd JE, Zhdanov VS, Newman JH, Belenkov Y, Meyrick B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol. 1995;146:389–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Palevsky HI, Schloo BL, Pietra GG, et al. Primary pulmonary hypertension. Vascular structure, morphometry, and responsiveness to vasodilator agents. Circulation. 1989;80:1207–21.

    Article  CAS  PubMed  Google Scholar 

  18. Yi ES, Kim H, Ahn H, et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Respir Crit Care Med. 2000;162:1577–86.

    Article  CAS  PubMed  Google Scholar 

  19. Yamaki S, Wagenvoort CA. Comparison of primary plexogenic arteriopathy in adults and children. A morphometric study in 40 patients. Br Heart J. 1985;54:428–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda). 2006;21:134–45.

    Article  CAS  Google Scholar 

  21. Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Torsney E, Hu Y, Xu Q. Adventitial progenitor cells contribute to arteriosclerosis. Trends Cardiovasc Med. 2005;15:64–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dorfmuller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J. 2003;22:358–63.

    Article  CAS  PubMed  Google Scholar 

  24. Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res. 2011;109:867–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nathan C. Points of control in inflammation. Nature. 2002;420:846–52.

    Article  CAS  PubMed  Google Scholar 

  27. Hong KH, Lee YJ, Lee E, et al. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 2008;118:722–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hamidi SA, Prabhakar S, Said SI. Enhancement of pulmonary vascular remodelling and inflammatory genes with VIP gene deletion. Eur Respir J. 2008;31:135–9.

    Article  CAS  PubMed  Google Scholar 

  29. Marecki JC, Cool CD, Parr JE, et al. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med. 2006;174:437–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Crosby A, Jones FM, Southwood M, et al. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 2010;181:279–88.

    Article  CAS  PubMed  Google Scholar 

  31. Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R. Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation. 2007;115:509–17.

    Article  PubMed  Google Scholar 

  32. Perros F, Dorfmuller P, Souza R, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J. 2007;29:462–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cool CD, Kennedy D, Voelkel NF, Tuder RM. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum Pathol. 1997;28:434–42.

    Article  CAS  PubMed  Google Scholar 

  34. Mauad T, Pozzan G, Lancas T, et al. Immunopathological aspects of schistosomiasis-associated pulmonary arterial hypertension. J Infect. 2014;68:90–8.

    Article  PubMed  Google Scholar 

  35. Thurnheer R, Jenni R, Russi EW, Greminger P, Speich R. Hyperthyroidism and pulmonary hypertension. J Intern Med. 1997;242:185–8.

    Article  CAS  PubMed  Google Scholar 

  36. Fagan KA, Badesch DB. Pulmonary hypertension associated with connective tissue disease. Prog Cardiovasc Dis. 2002;45:225–34.

    Article  PubMed  Google Scholar 

  37. Mouthon L, Guillevin L, Humbert M. Pulmonary arterial hypertension: an autoimmune disease? Eur Respir J. 2005;26:986–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hassoun PM, Mouthon L, Barbera JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54:S10–9.

    Article  CAS  PubMed  Google Scholar 

  39. Dib H, Tamby MC, Bussone G, et al. Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J. 2012;39:1405–14.

    Article  CAS  PubMed  Google Scholar 

  40. Soon E, Holmes AM, Treacy CM, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122:920–7.

    Article  CAS  PubMed  Google Scholar 

  41. Huertas A, Perros F, Tu L, et al. Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: a complex interplay. Circulation. 2014;129:1332–40.

    Article  PubMed  Google Scholar 

  42. Ricard N, Tu L, Le HM, et al. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation. 2014;129:1586–97.

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez O, Marcos E, Perros F, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2007;176:1041–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165:534–9.

    Article  PubMed  Google Scholar 

  45. Balabanian K, Foussat A, Dorfmuller P, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165:1419–25.

    Article  PubMed  Google Scholar 

  46. Perros F, Dorfmuller P, Souza R, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J. 2007;29:937–43.

    Article  CAS  PubMed  Google Scholar 

  47. Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res. 2014;15:47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Price LC, Wort SJ, Perros F, et al. Inflammation in pulmonary arterial hypertension. Chest. 2012;141:210–21.

    Article  CAS  PubMed  Google Scholar 

  49. Savale L, Tu L, Rideau D, et al. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10:6.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res. 2009;104:236–44. 28p.

    Article  CAS  PubMed  Google Scholar 

  51. Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151:1628–31.

    Article  CAS  PubMed  Google Scholar 

  52. Graham BB, Chabon J, Kumar R, et al. Protective role of IL-6 in vascular remodeling in Schistosoma pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;49:951–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Riccieri V, Stefanantoni K, Vasile M, et al. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol. 2011;29:S46–52.

    PubMed  Google Scholar 

  54. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK. Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis. 2005;8:63–71.

    Article  CAS  PubMed  Google Scholar 

  55. Kubo K, Hanaoka M, Hayano T, et al. Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema. Respir Physiol. 1998;111:301–10.

    Article  CAS  PubMed  Google Scholar 

  56. Ito T, Okada T, Miyashita H, et al. Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats. Circ Res. 2007;101:734–41.

    Article  CAS  PubMed  Google Scholar 

  57. Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA. IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol. 1999;162:920–30.

    CAS  PubMed  Google Scholar 

  58. Cho WK, Lee CM, Kang MJ, et al. IL-13 receptor alpha2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304:L112–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hecker M, Zaslona Z, Kwapiszewska G, et al. Dysregulation of the IL-13 receptor system: a novel pathomechanism in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182:805–18.

    Article  CAS  PubMed  Google Scholar 

  60. Graham BB, Mentink-Kane MM, El-Haddad H, et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol. 2010;177:1549–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205:799–810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Fujita M, Shannon JM, Irvin CG, et al. Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2001;280:L39–49.

    CAS  PubMed  Google Scholar 

  63. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Julia V, Hessel EM, Malherbe L, Glaichenhaus N, O’Garra A, Coffman RL. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity. 2002;16:271–83.

    Article  CAS  PubMed  Google Scholar 

  65. Graham BB, Chabon J, Gebreab L, et al. Transforming growth factor-beta signaling promotes pulmonary hypertension caused by Schistosoma mansoni. Circulation. 2013;128:1354–64.

    Article  CAS  PubMed  Google Scholar 

  66. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144:275–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pinto RF, Higuchi ML, Aiello VD. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovasc Pathol. 2004;13:268–75.

    Article  PubMed  Google Scholar 

  68. Frid MG, Brunetti JA, Burke DL, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168:659–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011;123:1986–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80:1298–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  73. Mora AL, Torres-Gonzalez E, Rojas M, et al. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. Am J Respir Cell Mol Biol. 2006;35:466–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183:2867–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  76. Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension [gene PPH1] is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67:737–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lane KB, Machado RD, Pauciulo MW, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000;26:81–4.

    Article  CAS  PubMed  Google Scholar 

  78. Richter A, Yeager ME, Zaiman A, Cool CD, Voelkel NF, Tuder RM. Impaired transforming growth factor-beta signaling in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;170:1340–8.

    Article  PubMed  Google Scholar 

  79. Ma W, Han W, Greer PA, et al. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. J Clin Invest. 2011;121:4548–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Zaiman AL, Podowski M, Medicherla S, et al. Role of the TGF-beta/Alk5 signaling pathway in monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med. 2008;177:896–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Kamato D, Burch ML, Piva TJ, et al. Transforming growth factor-beta signalling: role and consequences of Smad linker region phosphorylation. Cell Signal. 2013;25:2017–24.

    Article  CAS  PubMed  Google Scholar 

  82. You H, Gobert GN, Jones MK, Zhang W, McManus DP. Signalling pathways and the host-parasite relationship: putative targets for control interventions against schistosomiasis: signalling pathways and future anti-schistosome therapies. Bioessays. 2011;33:203–14.

    Article  CAS  PubMed  Google Scholar 

  83. Tian W, Jiang X, Tamosiuniene R, et al. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5:200ra117.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Perros F, Montani D, Dorfmuller P, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178:81–8.

    Article  CAS  PubMed  Google Scholar 

  85. Li XQ, Wang HM, Yang CG, Zhang XH, Han DD, Wang HL. Fluoxetine inhibited extracellular matrix of pulmonary artery and inflammation of lungs in monocrotaline-treated rats. Acta Pharmacol Sin. 2011;32:217–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Vogel JH, Weaver WF, Rose RL, Blount Jr SG, Grover RF. Pulmonary hypertension on exertion in normal man living at 10,150 feet [Leadville, Colorado]. Med Thorac. 1962;19:461–77.

    CAS  PubMed  Google Scholar 

  87. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest. 1998;101:927–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Yeager ME, Halley GR, Golpon HA, Voelkel NF, Tuder RM. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res. 2001;88:E2–11.

    Article  CAS  PubMed  Google Scholar 

  89. Aldred MA, Comhair SA, Varella-Garcia M, et al. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182:1153–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Tuder RM, Davis LA, Graham BB. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:260–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  92. Rai PR, Cool CD, King JA, et al. The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178:558–64.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation. 1963;28:915–25.

    Article  CAS  PubMed  Google Scholar 

  94. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol. 2005;288:H1209–17.

    Article  CAS  PubMed  Google Scholar 

  95. Dempsey EC, Das M, Frid MG, Stenmark KR. Unique growth properties of neonatal pulmonary vascular cells: importance of time- and site-specific responses, cell-cell interaction, and synergy. J Perinatol. 1996;16:S2–11.

    CAS  PubMed  Google Scholar 

  96. Lanner MC, Raper M, Pratt WM, Rhoades RA. Heterotrimeric G proteins and the platelet-derived growth factor receptor-beta contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol. 2005;33:412–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ball MK, Waypa GB, Mungai PT, et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha. Am J Respir Crit Care Med. 2014;189:314–24.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Weir EK, Olschewski A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res. 2006;71:630–41.

    Article  CAS  PubMed  Google Scholar 

  99. Remillard CV, Yuan JX. High altitude pulmonary hypertension: role of K+ and Ca2+ channels. High Alt Med Biol. 2005;6:133–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Launay JM, Herve P, Peoc’h K, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. 2002;8:1129–35.

    Article  CAS  PubMed  Google Scholar 

  101. Chen YF, Feng JA, Li P, et al. Dominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling. J Appl Physiol. 2006;100:564–71.

    Article  CAS  PubMed  Google Scholar 

  102. Jones R, Jacobson M, Steudel W. alpha-smooth-muscle actin and microvascular precursor smooth-muscle cells in pulmonary hypertension. Am J Respir Cell Mol Biol. 1999;20:582–94.

    Article  CAS  PubMed  Google Scholar 

  103. Sobin SS, Tremer HM, Hardy JD, Chiodi HP. Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:1445–55.

    CAS  PubMed  Google Scholar 

  104. Barbera JA. Mechanisms of development of chronic obstructive pulmonary disease-associated pulmonary hypertension. Pulm Circ. 2013;3:160–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Ten VS, Pinsky DJ. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care. 2002;8:242–50.

    Article  PubMed  Google Scholar 

  106. Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol. 1999;277:L1057–65.

    CAS  PubMed  Google Scholar 

  107. Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Invest. 2013;43:855–65.

    Article  CAS  PubMed  Google Scholar 

  108. Kaelin Jr WG, Thompson CB. Q&A: Cancer: clues from cell metabolism. Nature. 2010;465:562–4.

    Article  CAS  PubMed  Google Scholar 

  109. Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A. 2007;104:1342–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Marsboom G, Wietholt C, Haney CR, et al. Lung [1][8]F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185:670–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71.

    Article  CAS  PubMed  Google Scholar 

  112. Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103:691–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Brusselmans K, Compernolle V, Tjwa M, et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest. 2003;111:1519–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Whitman EM, Pisarcik S, Luke T, et al. Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol. 2008;294:L309–18.

    Article  CAS  PubMed  Google Scholar 

  115. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 2006;98:1528–37.

    Article  CAS  PubMed  Google Scholar 

  116. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998;329(Pt 1):191–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Hitosugi T, Fan J, Chung TW, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell. 2011;44:864–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30:142–50.

    Article  CAS  PubMed  Google Scholar 

  119. Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:L513–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Fijalkowska I, Xu W, Comhair SA, et al. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol. 2010;176:1130–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Bowers R, Cool C, Murphy RC, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med. 2004;169:764–9.

    Article  PubMed  Google Scholar 

  122. Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res. 2014;115:148–64.

    Article  CAS  PubMed  Google Scholar 

  123. Marsboom G, Toth PT, Ryan JJ, et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012;110:1484–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Platoshyn O, Golovina VA, Bailey CL, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2000;279:C1540–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, R., Robinson, J.C., Tuder, R.M. (2016). The Defining Characteristics of Pulmonary Arterial Hypertension. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics